
Object Oriented Programming Languages Smalltalk C++ Java

CS 220: Survey of Programming Languages
Lecture Slides

Object Oriented Programming Languages

Jan Michael C. Yap

Algorithms and Complexity Laboratory
Department of Computer Science

University of the Philippines, Diliman
jcyap@dcs.upd.edu.ph

Session 5



Object Oriented Programming Languages Smalltalk C++ Java

Object Oriented Programming Languages

Object Oriented Programming Languages

Smalltalk

C++

Java



Object Oriented Programming Languages Smalltalk C++ Java

Object Oriented Programming Languages

Object Oriented Programming Languages

Smalltalk

C++

Java



Object Oriented Programming Languages Smalltalk C++ Java

Characteristics of an object-oriented PL

• Classes as objects
• Variables as properties
• Procedures/functions as methods

• Access control via abstraction and encapsulation
• Object polymorphism

• Subclass, superclass, and interfaces
• Inheritance

• Deeply rooted from imperative PLs



Object Oriented Programming Languages Smalltalk C++ Java

Characteristics of an object-oriented PL

• Classes as objects

• Variables as properties
• Procedures/functions as methods

• Access control via abstraction and encapsulation
• Object polymorphism

• Subclass, superclass, and interfaces
• Inheritance

• Deeply rooted from imperative PLs



Object Oriented Programming Languages Smalltalk C++ Java

Characteristics of an object-oriented PL

• Classes as objects
• Variables as properties
• Procedures/functions as methods

• Access control via abstraction and encapsulation
• Object polymorphism

• Subclass, superclass, and interfaces
• Inheritance

• Deeply rooted from imperative PLs



Object Oriented Programming Languages Smalltalk C++ Java

Characteristics of an object-oriented PL

• Classes as objects
• Variables as properties
• Procedures/functions as methods

• Access control via abstraction and encapsulation

• Object polymorphism
• Subclass, superclass, and interfaces
• Inheritance

• Deeply rooted from imperative PLs



Object Oriented Programming Languages Smalltalk C++ Java

Characteristics of an object-oriented PL

• Classes as objects
• Variables as properties
• Procedures/functions as methods

• Access control via abstraction and encapsulation
• Object polymorphism

• Subclass, superclass, and interfaces
• Inheritance

• Deeply rooted from imperative PLs



Object Oriented Programming Languages Smalltalk C++ Java

Characteristics of an object-oriented PL

• Classes as objects
• Variables as properties
• Procedures/functions as methods

• Access control via abstraction and encapsulation
• Object polymorphism

• Subclass, superclass, and interfaces
• Inheritance

• Deeply rooted from imperative PLs



Object Oriented Programming Languages Smalltalk C++ Java

Characteristics of an object-oriented PL

• Classes as objects
• Variables as properties
• Procedures/functions as methods

• Access control via abstraction and encapsulation
• Object polymorphism

• Subclass, superclass, and interfaces
• Inheritance

• Deeply rooted from imperative PLs



Object Oriented Programming Languages Smalltalk C++ Java

The “birth” of OO according to Alan Kay

• “Central” motivations for object oriented programming
• “[F]ind a better module scheme for complex systems involving
hiding of details...”

• “... [F]ind a more flexible version of assignment, and then to try
to eliminate it altogether.”

• “The basic principal(sic?) of recursive design is to make the parts
have the same power as the whole.” - Bob Barton

• “I recalled the monads of Leibniz, the “dividing nature at its
joints’’ discourse of Plato, and other attempts to parse
complexity.”

http://gagne.homedns.org/∼tgagne/contrib/EarlyHistoryST.html



Object Oriented Programming Languages Smalltalk C++ Java

The “birth” of OO according to Alan Kay

• “Central” motivations for object oriented programming

• “[F]ind a better module scheme for complex systems involving
hiding of details...”

• “... [F]ind a more flexible version of assignment, and then to try
to eliminate it altogether.”

• “The basic principal(sic?) of recursive design is to make the parts
have the same power as the whole.” - Bob Barton

• “I recalled the monads of Leibniz, the “dividing nature at its
joints’’ discourse of Plato, and other attempts to parse
complexity.”

http://gagne.homedns.org/∼tgagne/contrib/EarlyHistoryST.html



Object Oriented Programming Languages Smalltalk C++ Java

The “birth” of OO according to Alan Kay

• “Central” motivations for object oriented programming
• “[F]ind a better module scheme for complex systems involving
hiding of details...”

• “... [F]ind a more flexible version of assignment, and then to try
to eliminate it altogether.”

• “The basic principal(sic?) of recursive design is to make the parts
have the same power as the whole.” - Bob Barton

• “I recalled the monads of Leibniz, the “dividing nature at its
joints’’ discourse of Plato, and other attempts to parse
complexity.”

http://gagne.homedns.org/∼tgagne/contrib/EarlyHistoryST.html



Object Oriented Programming Languages Smalltalk C++ Java

The “birth” of OO according to Alan Kay

• “Central” motivations for object oriented programming
• “[F]ind a better module scheme for complex systems involving
hiding of details...”

• “... [F]ind a more flexible version of assignment, and then to try
to eliminate it altogether.”

• “The basic principal(sic?) of recursive design is to make the parts
have the same power as the whole.” - Bob Barton

• “I recalled the monads of Leibniz, the “dividing nature at its
joints’’ discourse of Plato, and other attempts to parse
complexity.”

http://gagne.homedns.org/∼tgagne/contrib/EarlyHistoryST.html



Object Oriented Programming Languages Smalltalk C++ Java

The “birth” of OO according to Alan Kay

• “Central” motivations for object oriented programming
• “[F]ind a better module scheme for complex systems involving
hiding of details...”

• “... [F]ind a more flexible version of assignment, and then to try
to eliminate it altogether.”

• “The basic principal(sic?) of recursive design is to make the parts
have the same power as the whole.” - Bob Barton

• “I recalled the monads of Leibniz, the “dividing nature at its
joints’’ discourse of Plato, and other attempts to parse
complexity.”

http://gagne.homedns.org/∼tgagne/contrib/EarlyHistoryST.html



Object Oriented Programming Languages Smalltalk C++ Java

The “birth” of OO according to Alan Kay

• “Central” motivations for object oriented programming
• “[F]ind a better module scheme for complex systems involving
hiding of details...”

• “... [F]ind a more flexible version of assignment, and then to try
to eliminate it altogether.”

• “The basic principal(sic?) of recursive design is to make the parts
have the same power as the whole.” - Bob Barton

• “I recalled the monads of Leibniz, the “dividing nature at its
joints’’ discourse of Plato, and other attempts to parse
complexity.”

http://gagne.homedns.org/∼tgagne/contrib/EarlyHistoryST.html



Object Oriented Programming Languages Smalltalk C++ Java

By the way...

This is Alan Kay: Not this one:

Photo 1: http://www.aes.org/technical/images/Alan_Kay_Photo.jpg
Photo 2: http://famousdude.com/images/allan-k.-06.jpg



Object Oriented Programming Languages Smalltalk C++ Java

By the way...

This is Alan Kay:

Not this one:

Photo 1: http://www.aes.org/technical/images/Alan_Kay_Photo.jpg
Photo 2: http://famousdude.com/images/allan-k.-06.jpg



Object Oriented Programming Languages Smalltalk C++ Java

By the way...

This is Alan Kay: Not this one:

Photo 1: http://www.aes.org/technical/images/Alan_Kay_Photo.jpg
Photo 2: http://famousdude.com/images/allan-k.-06.jpg



Object Oriented Programming Languages Smalltalk C++ Java

Imperative PL“lineage” redux

http://cgi.csc.liv.ac.uk/∼grant/Teaching/COMP205/intro.html



Object Oriented Programming Languages Smalltalk C++ Java

Simula as the progenitor of OOPLs

http://cgi.csc.liv.ac.uk/∼grant/Teaching/COMP205/intro.html



Object Oriented Programming Languages Smalltalk C++ Java

Object Oriented Programming Languages

Object Oriented Programming Languages

Smalltalk

C++

Java



Object Oriented Programming Languages Smalltalk C++ Java

Background

• Name was christened by Alan Kay
• “[A] language I now called “Smalltalk” - as in “programming

should be a matter of ...” and “children should program in... ”

• The original Smalltalk was released in 1971, but the first “real”
version was not until 1972.

• Main ideas behind Smalltalk’s scheme
• “Everything is an object”
• “Objects communicate by sending and receiving messages”
• “Objects have their own memory”
• “Every object is an instance of a class”
• “The class holds the shared behavior for its instances”
• “To eval[uate] a program list, control is passed to the first object
and the remainder is treated as its message”

http://gagne.homedns.org/∼tgagne/contrib/EarlyHistoryST.html



Object Oriented Programming Languages Smalltalk C++ Java

Background

• Name was christened by Alan Kay

• “[A] language I now called “Smalltalk” - as in “programming
should be a matter of ...” and “children should program in... ”

• The original Smalltalk was released in 1971, but the first “real”
version was not until 1972.

• Main ideas behind Smalltalk’s scheme
• “Everything is an object”
• “Objects communicate by sending and receiving messages”
• “Objects have their own memory”
• “Every object is an instance of a class”
• “The class holds the shared behavior for its instances”
• “To eval[uate] a program list, control is passed to the first object
and the remainder is treated as its message”

http://gagne.homedns.org/∼tgagne/contrib/EarlyHistoryST.html



Object Oriented Programming Languages Smalltalk C++ Java

Background

• Name was christened by Alan Kay
• “[A] language I now called “Smalltalk” - as in “programming
should be a matter of ...” and “children should program in... ”

• The original Smalltalk was released in 1971, but the first “real”
version was not until 1972.

• Main ideas behind Smalltalk’s scheme
• “Everything is an object”
• “Objects communicate by sending and receiving messages”
• “Objects have their own memory”
• “Every object is an instance of a class”
• “The class holds the shared behavior for its instances”
• “To eval[uate] a program list, control is passed to the first object
and the remainder is treated as its message”

http://gagne.homedns.org/∼tgagne/contrib/EarlyHistoryST.html



Object Oriented Programming Languages Smalltalk C++ Java

Background

• Name was christened by Alan Kay
• “[A] language I now called “Smalltalk” - as in “programming
should be a matter of ...” and “children should program in... ”

• The original Smalltalk was released in 1971, but the first “real”
version was not until 1972.

• Main ideas behind Smalltalk’s scheme
• “Everything is an object”
• “Objects communicate by sending and receiving messages”
• “Objects have their own memory”
• “Every object is an instance of a class”
• “The class holds the shared behavior for its instances”
• “To eval[uate] a program list, control is passed to the first object
and the remainder is treated as its message”

http://gagne.homedns.org/∼tgagne/contrib/EarlyHistoryST.html



Object Oriented Programming Languages Smalltalk C++ Java

Background

• Name was christened by Alan Kay
• “[A] language I now called “Smalltalk” - as in “programming
should be a matter of ...” and “children should program in... ”

• The original Smalltalk was released in 1971, but the first “real”
version was not until 1972.

• Main ideas behind Smalltalk’s scheme

• “Everything is an object”
• “Objects communicate by sending and receiving messages”
• “Objects have their own memory”
• “Every object is an instance of a class”
• “The class holds the shared behavior for its instances”
• “To eval[uate] a program list, control is passed to the first object
and the remainder is treated as its message”

http://gagne.homedns.org/∼tgagne/contrib/EarlyHistoryST.html



Object Oriented Programming Languages Smalltalk C++ Java

Background

• Name was christened by Alan Kay
• “[A] language I now called “Smalltalk” - as in “programming
should be a matter of ...” and “children should program in... ”

• The original Smalltalk was released in 1971, but the first “real”
version was not until 1972.

• Main ideas behind Smalltalk’s scheme
• “Everything is an object”

• “Objects communicate by sending and receiving messages”
• “Objects have their own memory”
• “Every object is an instance of a class”
• “The class holds the shared behavior for its instances”
• “To eval[uate] a program list, control is passed to the first object
and the remainder is treated as its message”

http://gagne.homedns.org/∼tgagne/contrib/EarlyHistoryST.html



Object Oriented Programming Languages Smalltalk C++ Java

Background

• Name was christened by Alan Kay
• “[A] language I now called “Smalltalk” - as in “programming
should be a matter of ...” and “children should program in... ”

• The original Smalltalk was released in 1971, but the first “real”
version was not until 1972.

• Main ideas behind Smalltalk’s scheme
• “Everything is an object”
• “Objects communicate by sending and receiving messages”

• “Objects have their own memory”
• “Every object is an instance of a class”
• “The class holds the shared behavior for its instances”
• “To eval[uate] a program list, control is passed to the first object
and the remainder is treated as its message”

http://gagne.homedns.org/∼tgagne/contrib/EarlyHistoryST.html



Object Oriented Programming Languages Smalltalk C++ Java

Background

• Name was christened by Alan Kay
• “[A] language I now called “Smalltalk” - as in “programming
should be a matter of ...” and “children should program in... ”

• The original Smalltalk was released in 1971, but the first “real”
version was not until 1972.

• Main ideas behind Smalltalk’s scheme
• “Everything is an object”
• “Objects communicate by sending and receiving messages”
• “Objects have their own memory”

• “Every object is an instance of a class”
• “The class holds the shared behavior for its instances”
• “To eval[uate] a program list, control is passed to the first object
and the remainder is treated as its message”

http://gagne.homedns.org/∼tgagne/contrib/EarlyHistoryST.html



Object Oriented Programming Languages Smalltalk C++ Java

Background

• Name was christened by Alan Kay
• “[A] language I now called “Smalltalk” - as in “programming
should be a matter of ...” and “children should program in... ”

• The original Smalltalk was released in 1971, but the first “real”
version was not until 1972.

• Main ideas behind Smalltalk’s scheme
• “Everything is an object”
• “Objects communicate by sending and receiving messages”
• “Objects have their own memory”
• “Every object is an instance of a class”

• “The class holds the shared behavior for its instances”
• “To eval[uate] a program list, control is passed to the first object
and the remainder is treated as its message”

http://gagne.homedns.org/∼tgagne/contrib/EarlyHistoryST.html



Object Oriented Programming Languages Smalltalk C++ Java

Background

• Name was christened by Alan Kay
• “[A] language I now called “Smalltalk” - as in “programming
should be a matter of ...” and “children should program in... ”

• The original Smalltalk was released in 1971, but the first “real”
version was not until 1972.

• Main ideas behind Smalltalk’s scheme
• “Everything is an object”
• “Objects communicate by sending and receiving messages”
• “Objects have their own memory”
• “Every object is an instance of a class”
• “The class holds the shared behavior for its instances”

• “To eval[uate] a program list, control is passed to the first object
and the remainder is treated as its message”

http://gagne.homedns.org/∼tgagne/contrib/EarlyHistoryST.html



Object Oriented Programming Languages Smalltalk C++ Java

Background

• Name was christened by Alan Kay
• “[A] language I now called “Smalltalk” - as in “programming
should be a matter of ...” and “children should program in... ”

• The original Smalltalk was released in 1971, but the first “real”
version was not until 1972.

• Main ideas behind Smalltalk’s scheme
• “Everything is an object”
• “Objects communicate by sending and receiving messages”
• “Objects have their own memory”
• “Every object is an instance of a class”
• “The class holds the shared behavior for its instances”
• “To eval[uate] a program list, control is passed to the first object
and the remainder is treated as its message”

http://gagne.homedns.org/∼tgagne/contrib/EarlyHistoryST.html



Object Oriented Programming Languages Smalltalk C++ Java

Evaluation

• Data types1,2

• Integers, real (floating point) numbers, strings, logical as
primitive types

• Primitive types are also classes, and values are objects
• Support for multidimensional arrays, which can be unbounded
• Pointers are implicit objects

1http://people.cs.clemson.edu/∼turner/courses/cs428/current/webct/content/
st/stbasics.html

2http://web.cecs.pdx.edu/∼harry/musings/SmalltalkOverview.html



Object Oriented Programming Languages Smalltalk C++ Java

Evaluation

• Data types1,2
• Integers, real (floating point) numbers, strings, logical as
primitive types

• Primitive types are also classes, and values are objects
• Support for multidimensional arrays, which can be unbounded
• Pointers are implicit objects

1http://people.cs.clemson.edu/∼turner/courses/cs428/current/webct/content/
st/stbasics.html

2http://web.cecs.pdx.edu/∼harry/musings/SmalltalkOverview.html



Object Oriented Programming Languages Smalltalk C++ Java

Evaluation

• Data types1,2
• Integers, real (floating point) numbers, strings, logical as
primitive types

• Primitive types are also classes, and values are objects

• Support for multidimensional arrays, which can be unbounded
• Pointers are implicit objects

1http://people.cs.clemson.edu/∼turner/courses/cs428/current/webct/content/
st/stbasics.html

2http://web.cecs.pdx.edu/∼harry/musings/SmalltalkOverview.html



Object Oriented Programming Languages Smalltalk C++ Java

Evaluation

• Data types1,2
• Integers, real (floating point) numbers, strings, logical as
primitive types

• Primitive types are also classes, and values are objects
• Support for multidimensional arrays, which can be unbounded

• Pointers are implicit objects

1http://people.cs.clemson.edu/∼turner/courses/cs428/current/webct/content/
st/stbasics.html

2http://web.cecs.pdx.edu/∼harry/musings/SmalltalkOverview.html



Object Oriented Programming Languages Smalltalk C++ Java

Evaluation

• Data types1,2
• Integers, real (floating point) numbers, strings, logical as
primitive types

• Primitive types are also classes, and values are objects
• Support for multidimensional arrays, which can be unbounded
• Pointers are implicit objects

1http://people.cs.clemson.edu/∼turner/courses/cs428/current/webct/content/
st/stbasics.html

2http://web.cecs.pdx.edu/∼harry/musings/SmalltalkOverview.html



Object Oriented Programming Languages Smalltalk C++ Java

Evaluation

• Syntax design (Redline3,4)

• Production rules: 131
• Number of top alternatives: 51
• Number of symbols: (unaccounted)
• Vocabulary

• Nonterminal symbols: 80
• Terminal symbols: 109

• Primitive types are also classes, and values are objects
• Everything is a class, even primitive data types
• Too orthogonal for an OOPL, that programming tends to create
Ravioli Codes5

3https://github.com/antlr/grammars-v4/blob/master/smalltalk/Smalltalk.g4
4Manually counted
5http://www.ianbicking.org/orthogonality-is-pretentious.html



Object Oriented Programming Languages Smalltalk C++ Java

Evaluation

• Syntax design (Redline3,4)
• Production rules: 131
• Number of top alternatives: 51
• Number of symbols: (unaccounted)
• Vocabulary

• Nonterminal symbols: 80
• Terminal symbols: 109

• Primitive types are also classes, and values are objects
• Everything is a class, even primitive data types
• Too orthogonal for an OOPL, that programming tends to create
Ravioli Codes5

3https://github.com/antlr/grammars-v4/blob/master/smalltalk/Smalltalk.g4
4Manually counted
5http://www.ianbicking.org/orthogonality-is-pretentious.html



Object Oriented Programming Languages Smalltalk C++ Java

Evaluation

• Syntax design (Redline3,4)
• Production rules: 131
• Number of top alternatives: 51
• Number of symbols: (unaccounted)
• Vocabulary

• Nonterminal symbols: 80
• Terminal symbols: 109

• Primitive types are also classes, and values are objects

• Everything is a class, even primitive data types
• Too orthogonal for an OOPL, that programming tends to create
Ravioli Codes5

3https://github.com/antlr/grammars-v4/blob/master/smalltalk/Smalltalk.g4
4Manually counted
5http://www.ianbicking.org/orthogonality-is-pretentious.html



Object Oriented Programming Languages Smalltalk C++ Java

Evaluation

• Syntax design (Redline3,4)
• Production rules: 131
• Number of top alternatives: 51
• Number of symbols: (unaccounted)
• Vocabulary

• Nonterminal symbols: 80
• Terminal symbols: 109

• Primitive types are also classes, and values are objects
• Everything is a class, even primitive data types

• Too orthogonal for an OOPL, that programming tends to create
Ravioli Codes5

3https://github.com/antlr/grammars-v4/blob/master/smalltalk/Smalltalk.g4
4Manually counted
5http://www.ianbicking.org/orthogonality-is-pretentious.html



Object Oriented Programming Languages Smalltalk C++ Java

Evaluation

• Syntax design (Redline3,4)
• Production rules: 131
• Number of top alternatives: 51
• Number of symbols: (unaccounted)
• Vocabulary

• Nonterminal symbols: 80
• Terminal symbols: 109

• Primitive types are also classes, and values are objects
• Everything is a class, even primitive data types
• Too orthogonal for an OOPL, that programming tends to create
Ravioli Codes5

3https://github.com/antlr/grammars-v4/blob/master/smalltalk/Smalltalk.g4
4Manually counted
5http://www.ianbicking.org/orthogonality-is-pretentious.html



Object Oriented Programming Languages Smalltalk C++ Java

Evaluation

• Abstraction

• Methods are public and instance variables are private (to the
instances that own it) 6

• Classes are not in a namespace, so all class names must be
unique.7

• Expressivity: Only apparent drawback is lack of shortcut
operators

• Exception handling8

• Earlier versions did NOT have this mechanism
• Modern versions

• Exception classes (e.g. Visual Smalltalk)
• Signal classes (e.g. VisualWorks)

6http://pharo.gforge.inria.fr/PBE1/PBE1ch6.html
7http://java.ociweb.com/mark/programming/Smalltalk.html
8http://www.mimuw.edu.pl/∼sl/teaching/00_01/Delfin_EC/Overviews/

ExceptionHandling.htm



Object Oriented Programming Languages Smalltalk C++ Java

Evaluation

• Abstraction
• Methods are public and instance variables are private (to the
instances that own it) 6

• Classes are not in a namespace, so all class names must be
unique.7

• Expressivity: Only apparent drawback is lack of shortcut
operators

• Exception handling8

• Earlier versions did NOT have this mechanism
• Modern versions

• Exception classes (e.g. Visual Smalltalk)
• Signal classes (e.g. VisualWorks)

6http://pharo.gforge.inria.fr/PBE1/PBE1ch6.html
7http://java.ociweb.com/mark/programming/Smalltalk.html
8http://www.mimuw.edu.pl/∼sl/teaching/00_01/Delfin_EC/Overviews/

ExceptionHandling.htm



Object Oriented Programming Languages Smalltalk C++ Java

Evaluation

• Abstraction
• Methods are public and instance variables are private (to the
instances that own it) 6

• Classes are not in a namespace, so all class names must be
unique.7

• Expressivity: Only apparent drawback is lack of shortcut
operators

• Exception handling8

• Earlier versions did NOT have this mechanism
• Modern versions

• Exception classes (e.g. Visual Smalltalk)
• Signal classes (e.g. VisualWorks)

6http://pharo.gforge.inria.fr/PBE1/PBE1ch6.html
7http://java.ociweb.com/mark/programming/Smalltalk.html
8http://www.mimuw.edu.pl/∼sl/teaching/00_01/Delfin_EC/Overviews/

ExceptionHandling.htm



Object Oriented Programming Languages Smalltalk C++ Java

Evaluation

• Abstraction
• Methods are public and instance variables are private (to the
instances that own it) 6

• Classes are not in a namespace, so all class names must be
unique.7

• Expressivity: Only apparent drawback is lack of shortcut
operators

• Exception handling8

• Earlier versions did NOT have this mechanism
• Modern versions

• Exception classes (e.g. Visual Smalltalk)
• Signal classes (e.g. VisualWorks)

6http://pharo.gforge.inria.fr/PBE1/PBE1ch6.html
7http://java.ociweb.com/mark/programming/Smalltalk.html
8http://www.mimuw.edu.pl/∼sl/teaching/00_01/Delfin_EC/Overviews/

ExceptionHandling.htm



Object Oriented Programming Languages Smalltalk C++ Java

Evaluation

• Abstraction
• Methods are public and instance variables are private (to the
instances that own it) 6

• Classes are not in a namespace, so all class names must be
unique.7

• Expressivity: Only apparent drawback is lack of shortcut
operators

• Exception handling8

• Earlier versions did NOT have this mechanism
• Modern versions

• Exception classes (e.g. Visual Smalltalk)
• Signal classes (e.g. VisualWorks)

6http://pharo.gforge.inria.fr/PBE1/PBE1ch6.html
7http://java.ociweb.com/mark/programming/Smalltalk.html
8http://www.mimuw.edu.pl/∼sl/teaching/00_01/Delfin_EC/Overviews/

ExceptionHandling.htm



Object Oriented Programming Languages Smalltalk C++ Java

Evaluation

• Abstraction
• Methods are public and instance variables are private (to the
instances that own it) 6

• Classes are not in a namespace, so all class names must be
unique.7

• Expressivity: Only apparent drawback is lack of shortcut
operators

• Exception handling8

• Earlier versions did NOT have this mechanism

• Modern versions
• Exception classes (e.g. Visual Smalltalk)
• Signal classes (e.g. VisualWorks)

6http://pharo.gforge.inria.fr/PBE1/PBE1ch6.html
7http://java.ociweb.com/mark/programming/Smalltalk.html
8http://www.mimuw.edu.pl/∼sl/teaching/00_01/Delfin_EC/Overviews/

ExceptionHandling.htm



Object Oriented Programming Languages Smalltalk C++ Java

Evaluation

• Abstraction
• Methods are public and instance variables are private (to the
instances that own it) 6

• Classes are not in a namespace, so all class names must be
unique.7

• Expressivity: Only apparent drawback is lack of shortcut
operators

• Exception handling8

• Earlier versions did NOT have this mechanism
• Modern versions

• Exception classes (e.g. Visual Smalltalk)
• Signal classes (e.g. VisualWorks)

6http://pharo.gforge.inria.fr/PBE1/PBE1ch6.html
7http://java.ociweb.com/mark/programming/Smalltalk.html
8http://www.mimuw.edu.pl/∼sl/teaching/00_01/Delfin_EC/Overviews/

ExceptionHandling.htm



Object Oriented Programming Languages Smalltalk C++ Java

Evaluation

• Restricted aliasing

• Pointers are implicit9

• Methods employ pass-by-reference (for non-constants and
literals)10

• Efficiency 11

• Smalltalk implements dynamic typing 12 in that it type-checks at
runtime

• Storage manager is crucial to a lot of mechanisms compiling and
running Smalltalk

• Garbage collection
• Dynamic typing

• Interpreter executes bytecode to evaluate expressions and
methods

• Primitive methods implemented directly in machine language

9http://web.cecs.pdx.edu/∼harry/musings/SmalltalkOverview.html
10http://academic.udayton.edu/SaverioPerugini/PL/www/lecture_notes/parampassing.html
11RA Finkel, Chapter 5.4.5
12http://web.cecs.pdx.edu/∼harry/musings/SmalltalkOverview.html



Object Oriented Programming Languages Smalltalk C++ Java

Evaluation

• Restricted aliasing
• Pointers are implicit9

• Methods employ pass-by-reference (for non-constants and
literals)10

• Efficiency 11

• Smalltalk implements dynamic typing 12 in that it type-checks at
runtime

• Storage manager is crucial to a lot of mechanisms compiling and
running Smalltalk

• Garbage collection
• Dynamic typing

• Interpreter executes bytecode to evaluate expressions and
methods

• Primitive methods implemented directly in machine language

9http://web.cecs.pdx.edu/∼harry/musings/SmalltalkOverview.html
10http://academic.udayton.edu/SaverioPerugini/PL/www/lecture_notes/parampassing.html
11RA Finkel, Chapter 5.4.5
12http://web.cecs.pdx.edu/∼harry/musings/SmalltalkOverview.html



Object Oriented Programming Languages Smalltalk C++ Java

Evaluation

• Restricted aliasing
• Pointers are implicit9

• Methods employ pass-by-reference (for non-constants and
literals)10

• Efficiency 11

• Smalltalk implements dynamic typing 12 in that it type-checks at
runtime

• Storage manager is crucial to a lot of mechanisms compiling and
running Smalltalk

• Garbage collection
• Dynamic typing

• Interpreter executes bytecode to evaluate expressions and
methods

• Primitive methods implemented directly in machine language

9http://web.cecs.pdx.edu/∼harry/musings/SmalltalkOverview.html
10http://academic.udayton.edu/SaverioPerugini/PL/www/lecture_notes/parampassing.html
11RA Finkel, Chapter 5.4.5
12http://web.cecs.pdx.edu/∼harry/musings/SmalltalkOverview.html



Object Oriented Programming Languages Smalltalk C++ Java

Evaluation

• Restricted aliasing
• Pointers are implicit9

• Methods employ pass-by-reference (for non-constants and
literals)10

• Efficiency 11

• Smalltalk implements dynamic typing 12 in that it type-checks at
runtime

• Storage manager is crucial to a lot of mechanisms compiling and
running Smalltalk

• Garbage collection
• Dynamic typing

• Interpreter executes bytecode to evaluate expressions and
methods

• Primitive methods implemented directly in machine language

9http://web.cecs.pdx.edu/∼harry/musings/SmalltalkOverview.html
10http://academic.udayton.edu/SaverioPerugini/PL/www/lecture_notes/parampassing.html
11RA Finkel, Chapter 5.4.5
12http://web.cecs.pdx.edu/∼harry/musings/SmalltalkOverview.html



Object Oriented Programming Languages Smalltalk C++ Java

Evaluation

• Restricted aliasing
• Pointers are implicit9

• Methods employ pass-by-reference (for non-constants and
literals)10

• Efficiency 11

• Smalltalk implements dynamic typing 12 in that it type-checks at
runtime

• Storage manager is crucial to a lot of mechanisms compiling and
running Smalltalk

• Garbage collection
• Dynamic typing

• Interpreter executes bytecode to evaluate expressions and
methods

• Primitive methods implemented directly in machine language

9http://web.cecs.pdx.edu/∼harry/musings/SmalltalkOverview.html
10http://academic.udayton.edu/SaverioPerugini/PL/www/lecture_notes/parampassing.html
11RA Finkel, Chapter 5.4.5
12http://web.cecs.pdx.edu/∼harry/musings/SmalltalkOverview.html



Object Oriented Programming Languages Smalltalk C++ Java

Evaluation

• Restricted aliasing
• Pointers are implicit9

• Methods employ pass-by-reference (for non-constants and
literals)10

• Efficiency 11

• Smalltalk implements dynamic typing 12 in that it type-checks at
runtime

• Storage manager is crucial to a lot of mechanisms compiling and
running Smalltalk

• Garbage collection
• Dynamic typing

• Interpreter executes bytecode to evaluate expressions and
methods

• Primitive methods implemented directly in machine language

9http://web.cecs.pdx.edu/∼harry/musings/SmalltalkOverview.html
10http://academic.udayton.edu/SaverioPerugini/PL/www/lecture_notes/parampassing.html
11RA Finkel, Chapter 5.4.5
12http://web.cecs.pdx.edu/∼harry/musings/SmalltalkOverview.html



Object Oriented Programming Languages Smalltalk C++ Java

Evaluation

• Restricted aliasing
• Pointers are implicit9

• Methods employ pass-by-reference (for non-constants and
literals)10

• Efficiency 11

• Smalltalk implements dynamic typing 12 in that it type-checks at
runtime

• Storage manager is crucial to a lot of mechanisms compiling and
running Smalltalk

• Garbage collection

• Dynamic typing
• Interpreter executes bytecode to evaluate expressions and
methods

• Primitive methods implemented directly in machine language

9http://web.cecs.pdx.edu/∼harry/musings/SmalltalkOverview.html
10http://academic.udayton.edu/SaverioPerugini/PL/www/lecture_notes/parampassing.html
11RA Finkel, Chapter 5.4.5
12http://web.cecs.pdx.edu/∼harry/musings/SmalltalkOverview.html



Object Oriented Programming Languages Smalltalk C++ Java

Evaluation

• Restricted aliasing
• Pointers are implicit9

• Methods employ pass-by-reference (for non-constants and
literals)10

• Efficiency 11

• Smalltalk implements dynamic typing 12 in that it type-checks at
runtime

• Storage manager is crucial to a lot of mechanisms compiling and
running Smalltalk

• Garbage collection
• Dynamic typing

• Interpreter executes bytecode to evaluate expressions and
methods

• Primitive methods implemented directly in machine language

9http://web.cecs.pdx.edu/∼harry/musings/SmalltalkOverview.html
10http://academic.udayton.edu/SaverioPerugini/PL/www/lecture_notes/parampassing.html
11RA Finkel, Chapter 5.4.5
12http://web.cecs.pdx.edu/∼harry/musings/SmalltalkOverview.html



Object Oriented Programming Languages Smalltalk C++ Java

Evaluation

• Restricted aliasing
• Pointers are implicit9

• Methods employ pass-by-reference (for non-constants and
literals)10

• Efficiency 11

• Smalltalk implements dynamic typing 12 in that it type-checks at
runtime

• Storage manager is crucial to a lot of mechanisms compiling and
running Smalltalk

• Garbage collection
• Dynamic typing

• Interpreter executes bytecode to evaluate expressions and
methods

• Primitive methods implemented directly in machine language

9http://web.cecs.pdx.edu/∼harry/musings/SmalltalkOverview.html
10http://academic.udayton.edu/SaverioPerugini/PL/www/lecture_notes/parampassing.html
11RA Finkel, Chapter 5.4.5
12http://web.cecs.pdx.edu/∼harry/musings/SmalltalkOverview.html



Object Oriented Programming Languages Smalltalk C++ Java

Evaluation

• Restricted aliasing
• Pointers are implicit9

• Methods employ pass-by-reference (for non-constants and
literals)10

• Efficiency 11

• Smalltalk implements dynamic typing 12 in that it type-checks at
runtime

• Storage manager is crucial to a lot of mechanisms compiling and
running Smalltalk

• Garbage collection
• Dynamic typing

• Interpreter executes bytecode to evaluate expressions and
methods

• Primitive methods implemented directly in machine language

9http://web.cecs.pdx.edu/∼harry/musings/SmalltalkOverview.html
10http://academic.udayton.edu/SaverioPerugini/PL/www/lecture_notes/parampassing.html
11RA Finkel, Chapter 5.4.5
12http://web.cecs.pdx.edu/∼harry/musings/SmalltalkOverview.html



Object Oriented Programming Languages Smalltalk C++ Java

Object Oriented Programming Languages

Object Oriented Programming Languages

Smalltalk

C++

Java



Object Oriented Programming Languages Smalltalk C++ Java

Background

• C++ is an “upgrade” of C to handle object-oriented
programming.

• Developed by Bjarne Stroustrup at Bell Laboratories and
published initially in 1983

http://groups.engin.umd.umich.edu/CIS/course.des/cis400/cpp/cpp.html



Object Oriented Programming Languages Smalltalk C++ Java

Background

• C++ is an “upgrade” of C to handle object-oriented
programming.

• Developed by Bjarne Stroustrup at Bell Laboratories and
published initially in 1983

http://groups.engin.umd.umich.edu/CIS/course.des/cis400/cpp/cpp.html



Object Oriented Programming Languages Smalltalk C++ Java

Background

• C++ is an “upgrade” of C to handle object-oriented
programming.

• Developed by Bjarne Stroustrup at Bell Laboratories and
published initially in 1983

http://groups.engin.umd.umich.edu/CIS/course.des/cis400/cpp/cpp.html



Object Oriented Programming Languages Smalltalk C++ Java

Evaluation

• Data types
• Integers, floating and fixed point real numbers, characters,

enumerations as primitive types
• Support for multidimensional arrays
• Explicit pointers
• Allows for derived structures using struct and typedef

declarations apart from class declarations



Object Oriented Programming Languages Smalltalk C++ Java

Evaluation

• Data types

• Integers, floating and fixed point real numbers, characters,
enumerations as primitive types

• Support for multidimensional arrays
• Explicit pointers
• Allows for derived structures using struct and typedef

declarations apart from class declarations



Object Oriented Programming Languages Smalltalk C++ Java

Evaluation

• Data types
• Integers, floating and fixed point real numbers, characters,
enumerations as primitive types

• Support for multidimensional arrays
• Explicit pointers
• Allows for derived structures using struct and typedef

declarations apart from class declarations



Object Oriented Programming Languages Smalltalk C++ Java

Evaluation

• Data types
• Integers, floating and fixed point real numbers, characters,
enumerations as primitive types

• Support for multidimensional arrays

• Explicit pointers
• Allows for derived structures using struct and typedef

declarations apart from class declarations



Object Oriented Programming Languages Smalltalk C++ Java

Evaluation

• Data types
• Integers, floating and fixed point real numbers, characters,
enumerations as primitive types

• Support for multidimensional arrays
• Explicit pointers

• Allows for derived structures using struct and typedef
declarations apart from class declarations



Object Oriented Programming Languages Smalltalk C++ Java

Evaluation

• Data types
• Integers, floating and fixed point real numbers, characters,
enumerations as primitive types

• Support for multidimensional arrays
• Explicit pointers
• Allows for derived structures using struct and typedef
declarations apart from class declarations



Object Oriented Programming Languages Smalltalk C++ Java

Evaluation

• Syntax design (C++ 0x13)

• Production rules: 159
• Number of top alternatives: 449
• Number of symbols: 1,835
• Vocabulary

• Nonterminal symbols: 162
• Terminal symbols: 119

13http://slebok.github.io/zoo/cpp/cpp0x/n2723/extracted/index.html



Object Oriented Programming Languages Smalltalk C++ Java

Evaluation

• Syntax design (C++ 0x13)
• Production rules: 159
• Number of top alternatives: 449
• Number of symbols: 1,835
• Vocabulary

• Nonterminal symbols: 162
• Terminal symbols: 119

13http://slebok.github.io/zoo/cpp/cpp0x/n2723/extracted/index.html



Object Oriented Programming Languages Smalltalk C++ Java

Evaluation

• Syntax design (Continuation)

• Orthogonality14

• Primitive types and structs can be returned from functions, but
cannot (technically) be done for arrays.

• Again, arrays as actual parameters in a function call
• void pointers and return types
• Continued existence of structs

• Uniformity
• Primitive types are NOT objects/classes
• Without the explicit use of a (de)referencing operator and

excluding pointers, any other type is pass-by-value, EXCEPT
arrays, which uses pass-by-reference

• Having a void pointer, a void return type, but no void typed
variable

• “I made up the term ‘object-oriented’, and I can tell you I didn’t
have C++ in mind” - Alan Kay

• “C++ would make a decent teaching language if we could teach
the ++ part without the C part.” - Michael B. Feldman.

14RA Sebesta, Chapter 1.3



Object Oriented Programming Languages Smalltalk C++ Java

Evaluation

• Syntax design (Continuation)
• Orthogonality14

• Primitive types and structs can be returned from functions, but
cannot (technically) be done for arrays.

• Again, arrays as actual parameters in a function call
• void pointers and return types
• Continued existence of structs

• Uniformity
• Primitive types are NOT objects/classes
• Without the explicit use of a (de)referencing operator and

excluding pointers, any other type is pass-by-value, EXCEPT
arrays, which uses pass-by-reference

• Having a void pointer, a void return type, but no void typed
variable

• “I made up the term ‘object-oriented’, and I can tell you I didn’t
have C++ in mind” - Alan Kay

• “C++ would make a decent teaching language if we could teach
the ++ part without the C part.” - Michael B. Feldman.

14RA Sebesta, Chapter 1.3



Object Oriented Programming Languages Smalltalk C++ Java

Evaluation

• Syntax design (Continuation)
• Orthogonality14

• Primitive types and structs can be returned from functions, but
cannot (technically) be done for arrays.

• Again, arrays as actual parameters in a function call
• void pointers and return types
• Continued existence of structs

• Uniformity
• Primitive types are NOT objects/classes
• Without the explicit use of a (de)referencing operator and

excluding pointers, any other type is pass-by-value, EXCEPT
arrays, which uses pass-by-reference

• Having a void pointer, a void return type, but no void typed
variable

• “I made up the term ‘object-oriented’, and I can tell you I didn’t
have C++ in mind” - Alan Kay

• “C++ would make a decent teaching language if we could teach
the ++ part without the C part.” - Michael B. Feldman.

14RA Sebesta, Chapter 1.3



Object Oriented Programming Languages Smalltalk C++ Java

Evaluation

• Syntax design (Continuation)
• Orthogonality14

• Primitive types and structs can be returned from functions, but
cannot (technically) be done for arrays.

• Again, arrays as actual parameters in a function call

• void pointers and return types
• Continued existence of structs

• Uniformity
• Primitive types are NOT objects/classes
• Without the explicit use of a (de)referencing operator and

excluding pointers, any other type is pass-by-value, EXCEPT
arrays, which uses pass-by-reference

• Having a void pointer, a void return type, but no void typed
variable

• “I made up the term ‘object-oriented’, and I can tell you I didn’t
have C++ in mind” - Alan Kay

• “C++ would make a decent teaching language if we could teach
the ++ part without the C part.” - Michael B. Feldman.

14RA Sebesta, Chapter 1.3



Object Oriented Programming Languages Smalltalk C++ Java

Evaluation

• Syntax design (Continuation)
• Orthogonality14

• Primitive types and structs can be returned from functions, but
cannot (technically) be done for arrays.

• Again, arrays as actual parameters in a function call
• void pointers and return types

• Continued existence of structs
• Uniformity

• Primitive types are NOT objects/classes
• Without the explicit use of a (de)referencing operator and

excluding pointers, any other type is pass-by-value, EXCEPT
arrays, which uses pass-by-reference

• Having a void pointer, a void return type, but no void typed
variable

• “I made up the term ‘object-oriented’, and I can tell you I didn’t
have C++ in mind” - Alan Kay

• “C++ would make a decent teaching language if we could teach
the ++ part without the C part.” - Michael B. Feldman.

14RA Sebesta, Chapter 1.3



Object Oriented Programming Languages Smalltalk C++ Java

Evaluation

• Syntax design (Continuation)
• Orthogonality14

• Primitive types and structs can be returned from functions, but
cannot (technically) be done for arrays.

• Again, arrays as actual parameters in a function call
• void pointers and return types
• Continued existence of structs

• Uniformity
• Primitive types are NOT objects/classes
• Without the explicit use of a (de)referencing operator and

excluding pointers, any other type is pass-by-value, EXCEPT
arrays, which uses pass-by-reference

• Having a void pointer, a void return type, but no void typed
variable

• “I made up the term ‘object-oriented’, and I can tell you I didn’t
have C++ in mind” - Alan Kay

• “C++ would make a decent teaching language if we could teach
the ++ part without the C part.” - Michael B. Feldman.

14RA Sebesta, Chapter 1.3



Object Oriented Programming Languages Smalltalk C++ Java

Evaluation

• Syntax design (Continuation)
• Orthogonality14

• Primitive types and structs can be returned from functions, but
cannot (technically) be done for arrays.

• Again, arrays as actual parameters in a function call
• void pointers and return types
• Continued existence of structs

• Uniformity

• Primitive types are NOT objects/classes
• Without the explicit use of a (de)referencing operator and

excluding pointers, any other type is pass-by-value, EXCEPT
arrays, which uses pass-by-reference

• Having a void pointer, a void return type, but no void typed
variable

• “I made up the term ‘object-oriented’, and I can tell you I didn’t
have C++ in mind” - Alan Kay

• “C++ would make a decent teaching language if we could teach
the ++ part without the C part.” - Michael B. Feldman.

14RA Sebesta, Chapter 1.3



Object Oriented Programming Languages Smalltalk C++ Java

Evaluation

• Syntax design (Continuation)
• Orthogonality14

• Primitive types and structs can be returned from functions, but
cannot (technically) be done for arrays.

• Again, arrays as actual parameters in a function call
• void pointers and return types
• Continued existence of structs

• Uniformity
• Primitive types are NOT objects/classes

• Without the explicit use of a (de)referencing operator and
excluding pointers, any other type is pass-by-value, EXCEPT
arrays, which uses pass-by-reference

• Having a void pointer, a void return type, but no void typed
variable

• “I made up the term ‘object-oriented’, and I can tell you I didn’t
have C++ in mind” - Alan Kay

• “C++ would make a decent teaching language if we could teach
the ++ part without the C part.” - Michael B. Feldman.

14RA Sebesta, Chapter 1.3



Object Oriented Programming Languages Smalltalk C++ Java

Evaluation

• Syntax design (Continuation)
• Orthogonality14

• Primitive types and structs can be returned from functions, but
cannot (technically) be done for arrays.

• Again, arrays as actual parameters in a function call
• void pointers and return types
• Continued existence of structs

• Uniformity
• Primitive types are NOT objects/classes
• Without the explicit use of a (de)referencing operator and

excluding pointers, any other type is pass-by-value, EXCEPT
arrays, which uses pass-by-reference

• Having a void pointer, a void return type, but no void typed
variable

• “I made up the term ‘object-oriented’, and I can tell you I didn’t
have C++ in mind” - Alan Kay

• “C++ would make a decent teaching language if we could teach
the ++ part without the C part.” - Michael B. Feldman.

14RA Sebesta, Chapter 1.3



Object Oriented Programming Languages Smalltalk C++ Java

Evaluation

• Syntax design (Continuation)
• Orthogonality14

• Primitive types and structs can be returned from functions, but
cannot (technically) be done for arrays.

• Again, arrays as actual parameters in a function call
• void pointers and return types
• Continued existence of structs

• Uniformity
• Primitive types are NOT objects/classes
• Without the explicit use of a (de)referencing operator and

excluding pointers, any other type is pass-by-value, EXCEPT
arrays, which uses pass-by-reference

• Having a void pointer, a void return type, but no void typed
variable

• “I made up the term ‘object-oriented’, and I can tell you I didn’t
have C++ in mind” - Alan Kay

• “C++ would make a decent teaching language if we could teach
the ++ part without the C part.” - Michael B. Feldman.

14RA Sebesta, Chapter 1.3



Object Oriented Programming Languages Smalltalk C++ Java

Evaluation

• Syntax design (Continuation)
• Orthogonality14

• Primitive types and structs can be returned from functions, but
cannot (technically) be done for arrays.

• Again, arrays as actual parameters in a function call
• void pointers and return types
• Continued existence of structs

• Uniformity
• Primitive types are NOT objects/classes
• Without the explicit use of a (de)referencing operator and

excluding pointers, any other type is pass-by-value, EXCEPT
arrays, which uses pass-by-reference

• Having a void pointer, a void return type, but no void typed
variable

• “I made up the term ‘object-oriented’, and I can tell you I didn’t
have C++ in mind” - Alan Kay

• “C++ would make a decent teaching language if we could teach
the ++ part without the C part.” - Michael B. Feldman.

14RA Sebesta, Chapter 1.3



Object Oriented Programming Languages Smalltalk C++ Java

Evaluation

• Syntax design (Continuation)
• Orthogonality14

• Primitive types and structs can be returned from functions, but
cannot (technically) be done for arrays.

• Again, arrays as actual parameters in a function call
• void pointers and return types
• Continued existence of structs

• Uniformity
• Primitive types are NOT objects/classes
• Without the explicit use of a (de)referencing operator and

excluding pointers, any other type is pass-by-value, EXCEPT
arrays, which uses pass-by-reference

• Having a void pointer, a void return type, but no void typed
variable

• “I made up the term ‘object-oriented’, and I can tell you I didn’t
have C++ in mind” - Alan Kay

• “C++ would make a decent teaching language if we could teach
the ++ part without the C part.” - Michael B. Feldman.

14RA Sebesta, Chapter 1.3



Object Oriented Programming Languages Smalltalk C++ Java

Evaluation

• Abstraction

• Access grants to variables and procedures can be declared via
public and private

• namespace declarations allow additional scoping of variables

• Expressivity: Rich standard library allows for easier coding of
fundamental algorithms and data structures

• Exception handling: try, catch, and throw keywords



Object Oriented Programming Languages Smalltalk C++ Java

Evaluation

• Abstraction
• Access grants to variables and procedures can be declared via
public and private

• namespace declarations allow additional scoping of variables

• Expressivity: Rich standard library allows for easier coding of
fundamental algorithms and data structures

• Exception handling: try, catch, and throw keywords



Object Oriented Programming Languages Smalltalk C++ Java

Evaluation

• Abstraction
• Access grants to variables and procedures can be declared via
public and private

• namespace declarations allow additional scoping of variables

• Expressivity: Rich standard library allows for easier coding of
fundamental algorithms and data structures

• Exception handling: try, catch, and throw keywords



Object Oriented Programming Languages Smalltalk C++ Java

Evaluation

• Abstraction
• Access grants to variables and procedures can be declared via
public and private

• namespace declarations allow additional scoping of variables

• Expressivity: Rich standard library allows for easier coding of
fundamental algorithms and data structures

• Exception handling: try, catch, and throw keywords



Object Oriented Programming Languages Smalltalk C++ Java

Evaluation

• Abstraction
• Access grants to variables and procedures can be declared via
public and private

• namespace declarations allow additional scoping of variables

• Expressivity: Rich standard library allows for easier coding of
fundamental algorithms and data structures

• Exception handling: try, catch, and throw keywords



Object Oriented Programming Languages Smalltalk C++ Java

Evaluation

• Restricted aliasing

• Explicit pointers
• Methods allow pass-by-reference

• Efficiency:
• Type checking: Employs static (compile time) type checking 15

• C++ compilers are known for their efficiency in terms of memory
and compilation time16 (but of course, there are those that are
more efficient especially when heavy number-crunching is
involved17)

15https://www.quora.com/Is-C++-dynamically-typed
16http://www.drdobbs.com/cpp/comparing-cc-compilers/184405450
17http://scienceblogs.com/goodmath/2006/11/02/the-c-is-efficient-language-fa/



Object Oriented Programming Languages Smalltalk C++ Java

Evaluation

• Restricted aliasing
• Explicit pointers

• Methods allow pass-by-reference
• Efficiency:

• Type checking: Employs static (compile time) type checking 15

• C++ compilers are known for their efficiency in terms of memory
and compilation time16 (but of course, there are those that are
more efficient especially when heavy number-crunching is
involved17)

15https://www.quora.com/Is-C++-dynamically-typed
16http://www.drdobbs.com/cpp/comparing-cc-compilers/184405450
17http://scienceblogs.com/goodmath/2006/11/02/the-c-is-efficient-language-fa/



Object Oriented Programming Languages Smalltalk C++ Java

Evaluation

• Restricted aliasing
• Explicit pointers
• Methods allow pass-by-reference

• Efficiency:
• Type checking: Employs static (compile time) type checking 15

• C++ compilers are known for their efficiency in terms of memory
and compilation time16 (but of course, there are those that are
more efficient especially when heavy number-crunching is
involved17)

15https://www.quora.com/Is-C++-dynamically-typed
16http://www.drdobbs.com/cpp/comparing-cc-compilers/184405450
17http://scienceblogs.com/goodmath/2006/11/02/the-c-is-efficient-language-fa/



Object Oriented Programming Languages Smalltalk C++ Java

Evaluation

• Restricted aliasing
• Explicit pointers
• Methods allow pass-by-reference

• Efficiency:

• Type checking: Employs static (compile time) type checking 15

• C++ compilers are known for their efficiency in terms of memory
and compilation time16 (but of course, there are those that are
more efficient especially when heavy number-crunching is
involved17)

15https://www.quora.com/Is-C++-dynamically-typed
16http://www.drdobbs.com/cpp/comparing-cc-compilers/184405450
17http://scienceblogs.com/goodmath/2006/11/02/the-c-is-efficient-language-fa/



Object Oriented Programming Languages Smalltalk C++ Java

Evaluation

• Restricted aliasing
• Explicit pointers
• Methods allow pass-by-reference

• Efficiency:
• Type checking: Employs static (compile time) type checking 15

• C++ compilers are known for their efficiency in terms of memory
and compilation time16 (but of course, there are those that are
more efficient especially when heavy number-crunching is
involved17)

15https://www.quora.com/Is-C++-dynamically-typed
16http://www.drdobbs.com/cpp/comparing-cc-compilers/184405450
17http://scienceblogs.com/goodmath/2006/11/02/the-c-is-efficient-language-fa/



Object Oriented Programming Languages Smalltalk C++ Java

Evaluation

• Restricted aliasing
• Explicit pointers
• Methods allow pass-by-reference

• Efficiency:
• Type checking: Employs static (compile time) type checking 15

• C++ compilers are known for their efficiency in terms of memory
and compilation time16 (but of course, there are those that are
more efficient especially when heavy number-crunching is
involved17)

15https://www.quora.com/Is-C++-dynamically-typed
16http://www.drdobbs.com/cpp/comparing-cc-compilers/184405450
17http://scienceblogs.com/goodmath/2006/11/02/the-c-is-efficient-language-fa/



Object Oriented Programming Languages Smalltalk C++ Java

Object Oriented Programming Languages

Object Oriented Programming Languages

Smalltalk

C++

Java



Object Oriented Programming Languages Smalltalk C++ Java

Background

• Developed in 1991 by the Green Team led by Ryan James
Gosling under the defunct Sun Microsystems

• Initially called Oak
• The main target of Java was to enhance Web experience

• In 1994, Java (Oak) was used to develop WebRunner (now known
as HotJava), a web browser that supports dynamic elements (e.g.
video, reactive input-output mechanisms)

• Achieved mainstream popularity in 1995

http://oracle.com.edgesuite.net/timeline/java/



Object Oriented Programming Languages Smalltalk C++ Java

Background

• Developed in 1991 by the Green Team led by Ryan James
Gosling under the defunct Sun Microsystems

• Initially called Oak
• The main target of Java was to enhance Web experience

• In 1994, Java (Oak) was used to develop WebRunner (now known
as HotJava), a web browser that supports dynamic elements (e.g.
video, reactive input-output mechanisms)

• Achieved mainstream popularity in 1995

http://oracle.com.edgesuite.net/timeline/java/



Object Oriented Programming Languages Smalltalk C++ Java

Background

• Developed in 1991 by the Green Team led by Ryan James
Gosling under the defunct Sun Microsystems

• Initially called Oak

• The main target of Java was to enhance Web experience
• In 1994, Java (Oak) was used to develop WebRunner (now known

as HotJava), a web browser that supports dynamic elements (e.g.
video, reactive input-output mechanisms)

• Achieved mainstream popularity in 1995

http://oracle.com.edgesuite.net/timeline/java/



Object Oriented Programming Languages Smalltalk C++ Java

Background

• Developed in 1991 by the Green Team led by Ryan James
Gosling under the defunct Sun Microsystems

• Initially called Oak
• The main target of Java was to enhance Web experience

• In 1994, Java (Oak) was used to develop WebRunner (now known
as HotJava), a web browser that supports dynamic elements (e.g.
video, reactive input-output mechanisms)

• Achieved mainstream popularity in 1995

http://oracle.com.edgesuite.net/timeline/java/



Object Oriented Programming Languages Smalltalk C++ Java

Background

• Developed in 1991 by the Green Team led by Ryan James
Gosling under the defunct Sun Microsystems

• Initially called Oak
• The main target of Java was to enhance Web experience

• In 1994, Java (Oak) was used to develop WebRunner (now known
as HotJava), a web browser that supports dynamic elements (e.g.
video, reactive input-output mechanisms)

• Achieved mainstream popularity in 1995

http://oracle.com.edgesuite.net/timeline/java/



Object Oriented Programming Languages Smalltalk C++ Java

Evaluation

• Data types

• Integers, floating and fixed point real numbers, characters,
enumerations as primitive types

• Support for multidimensional arrays
• Allows for derived structures via class declarations



Object Oriented Programming Languages Smalltalk C++ Java

Evaluation

• Data types
• Integers, floating and fixed point real numbers, characters,
enumerations as primitive types

• Support for multidimensional arrays
• Allows for derived structures via class declarations



Object Oriented Programming Languages Smalltalk C++ Java

Evaluation

• Data types
• Integers, floating and fixed point real numbers, characters,
enumerations as primitive types

• Support for multidimensional arrays

• Allows for derived structures via class declarations



Object Oriented Programming Languages Smalltalk C++ Java

Evaluation

• Data types
• Integers, floating and fixed point real numbers, characters,
enumerations as primitive types

• Support for multidimensional arrays
• Allows for derived structures via class declarations



Object Oriented Programming Languages Smalltalk C++ Java

Evaluation

• Syntax design (Java 5.018)

• Production rules: 302
• Number of top alternatives: 302
• Number of symbols: 1,782
• Vocabulary

• Nonterminal symbols: 110
• Terminal symbols: 265

• Grammar is similar to C++, but difference is that it was built
primarily as an OOPL rather than something that was built on
top of a PL with a different paradigm

18http://slebok.github.io/zoo/java/java-5/landman/extracted/index.html



Object Oriented Programming Languages Smalltalk C++ Java

Evaluation

• Syntax design (Java 5.018)
• Production rules: 302
• Number of top alternatives: 302
• Number of symbols: 1,782
• Vocabulary

• Nonterminal symbols: 110
• Terminal symbols: 265

• Grammar is similar to C++, but difference is that it was built
primarily as an OOPL rather than something that was built on
top of a PL with a different paradigm

18http://slebok.github.io/zoo/java/java-5/landman/extracted/index.html



Object Oriented Programming Languages Smalltalk C++ Java

Evaluation

• Syntax design (Java 5.018)
• Production rules: 302
• Number of top alternatives: 302
• Number of symbols: 1,782
• Vocabulary

• Nonterminal symbols: 110
• Terminal symbols: 265

• Grammar is similar to C++, but difference is that it was built
primarily as an OOPL rather than something that was built on
top of a PL with a different paradigm

18http://slebok.github.io/zoo/java/java-5/landman/extracted/index.html



Object Oriented Programming Languages Smalltalk C++ Java

Evaluation

• Abstraction

• Access grants to variables and procedures can be declared via
public, private, and protected

• package declaration for grouping together related classes

• Expressivity: Rich core API set allows for easier coding of
fundamental algorithms and data structures

• Exception handling: try, catch, and throw keywords



Object Oriented Programming Languages Smalltalk C++ Java

Evaluation

• Abstraction
• Access grants to variables and procedures can be declared via
public, private, and protected

• package declaration for grouping together related classes

• Expressivity: Rich core API set allows for easier coding of
fundamental algorithms and data structures

• Exception handling: try, catch, and throw keywords



Object Oriented Programming Languages Smalltalk C++ Java

Evaluation

• Abstraction
• Access grants to variables and procedures can be declared via
public, private, and protected

• package declaration for grouping together related classes

• Expressivity: Rich core API set allows for easier coding of
fundamental algorithms and data structures

• Exception handling: try, catch, and throw keywords



Object Oriented Programming Languages Smalltalk C++ Java

Evaluation

• Abstraction
• Access grants to variables and procedures can be declared via
public, private, and protected

• package declaration for grouping together related classes

• Expressivity: Rich core API set allows for easier coding of
fundamental algorithms and data structures

• Exception handling: try, catch, and throw keywords



Object Oriented Programming Languages Smalltalk C++ Java

Evaluation

• Abstraction
• Access grants to variables and procedures can be declared via
public, private, and protected

• package declaration for grouping together related classes

• Expressivity: Rich core API set allows for easier coding of
fundamental algorithms and data structures

• Exception handling: try, catch, and throw keywords



Object Oriented Programming Languages Smalltalk C++ Java

Evaluation

• Restricted aliasing: Everything is pass-by-value19,20

• Efficiency
• Employs both static (compile time) and dynamic (runtime) type

checking
• Memory inefficiency21,22

• Security vulnerabilities23

19http://jonskeet.uk/java/passing.html
20http://javadude.com/articles/passbyvalue.htm
21http://www.csi.ucd.ie/staff/jmurphy/publications/1681.pdf
22http://www.ibm.com/developerworks/library/j-codetoheap/
23http://krebsonsecurity.com/tag/java/



Object Oriented Programming Languages Smalltalk C++ Java

Evaluation

• Restricted aliasing: Everything is pass-by-value19,20

• Efficiency

• Employs both static (compile time) and dynamic (runtime) type
checking

• Memory inefficiency21,22

• Security vulnerabilities23

19http://jonskeet.uk/java/passing.html
20http://javadude.com/articles/passbyvalue.htm
21http://www.csi.ucd.ie/staff/jmurphy/publications/1681.pdf
22http://www.ibm.com/developerworks/library/j-codetoheap/
23http://krebsonsecurity.com/tag/java/



Object Oriented Programming Languages Smalltalk C++ Java

Evaluation

• Restricted aliasing: Everything is pass-by-value19,20

• Efficiency
• Employs both static (compile time) and dynamic (runtime) type
checking

• Memory inefficiency21,22

• Security vulnerabilities23

19http://jonskeet.uk/java/passing.html
20http://javadude.com/articles/passbyvalue.htm
21http://www.csi.ucd.ie/staff/jmurphy/publications/1681.pdf
22http://www.ibm.com/developerworks/library/j-codetoheap/
23http://krebsonsecurity.com/tag/java/



Object Oriented Programming Languages Smalltalk C++ Java

Evaluation

• Restricted aliasing: Everything is pass-by-value19,20

• Efficiency
• Employs both static (compile time) and dynamic (runtime) type
checking

• Memory inefficiency21,22

• Security vulnerabilities23

19http://jonskeet.uk/java/passing.html
20http://javadude.com/articles/passbyvalue.htm
21http://www.csi.ucd.ie/staff/jmurphy/publications/1681.pdf
22http://www.ibm.com/developerworks/library/j-codetoheap/
23http://krebsonsecurity.com/tag/java/



Object Oriented Programming Languages Smalltalk C++ Java

Evaluation

• Restricted aliasing: Everything is pass-by-value19,20

• Efficiency
• Employs both static (compile time) and dynamic (runtime) type
checking

• Memory inefficiency21,22

• Security vulnerabilities23

19http://jonskeet.uk/java/passing.html
20http://javadude.com/articles/passbyvalue.htm
21http://www.csi.ucd.ie/staff/jmurphy/publications/1681.pdf
22http://www.ibm.com/developerworks/library/j-codetoheap/
23http://krebsonsecurity.com/tag/java/



Object Oriented Programming Languages Smalltalk C++ Java

END OF SESSION 5


	Object Oriented Programming Languages
	Smalltalk
	C++
	Java

