
Functional Programming Languages LISP Haskell

CS 220: Survey of Programming Languages
Lecture Slides

Functional Programming Languages

Jan Michael C. Yap

Algorithms and Complexity Laboratory
Department of Computer Science

University of the Philippines, Diliman
jcyap@dcs.upd.edu.ph

Session 6

Functional Programming Languages LISP Haskell

Functional Programming Languages

Functional Programming Languages

LISP

Haskell

Functional Programming Languages LISP Haskell

Functional Programming Languages

Functional Programming Languages

LISP

Haskell

Functional Programming Languages LISP Haskell

Church-Turing thesis and Turing-completeness

• The Church-Turing thesis1: “Whenever there is an effective
method (algorithm) for obtaining the values of a mathematical
function, the function can be computed by a T[uring] M[achine].”

• Turing-completeness is a criterion of a computational system that
can simulate any (single-taped) Turing machine

• Systems here include computional hardware, model of
computation, and programming languages

1http://www.cse.uconn.edu/∼dqg/papers/cie05.pdf

Functional Programming Languages LISP Haskell

Church-Turing thesis and Turing-completeness

• The Church-Turing thesis1: “Whenever there is an effective
method (algorithm) for obtaining the values of a mathematical
function, the function can be computed by a T[uring] M[achine].”

• Turing-completeness is a criterion of a computational system that
can simulate any (single-taped) Turing machine

• Systems here include computional hardware, model of
computation, and programming languages

1http://www.cse.uconn.edu/∼dqg/papers/cie05.pdf

Functional Programming Languages LISP Haskell

Church-Turing thesis and Turing-completeness

• The Church-Turing thesis1: “Whenever there is an effective
method (algorithm) for obtaining the values of a mathematical
function, the function can be computed by a T[uring] M[achine].”

• Turing-completeness is a criterion of a computational system that
can simulate any (single-taped) Turing machine

• Systems here include computional hardware, model of
computation, and programming languages

1http://www.cse.uconn.edu/∼dqg/papers/cie05.pdf

Functional Programming Languages LISP Haskell

Church-Turing thesis and Turing-completeness

• The Church-Turing thesis1: “Whenever there is an effective
method (algorithm) for obtaining the values of a mathematical
function, the function can be computed by a T[uring] M[achine].”

• Turing-completeness is a criterion of a computational system that
can simulate any (single-taped) Turing machine

• Systems here include computional hardware, model of
computation, and programming languages

1http://www.cse.uconn.edu/∼dqg/papers/cie05.pdf

Functional Programming Languages LISP Haskell

The λ-calculus

• Developed by Alonzo Church in the 1930’s as a means of
describing computation, and is equivalent to Turing machines
(Turing-complete!)

• One of the precursors of symbolic computation
• “... [T]he smallest universal programming language of (sic) the
world.”

< expr > :=< name > | < func > | < application > |(< expr >)

< func > := λ < name > . < expr >

< application > :=< expr >< expr >

http://www.inf.fu-berlin.de/lehre/WS03/alpi/lambda.pdf

Functional Programming Languages LISP Haskell

The λ-calculus

• Developed by Alonzo Church in the 1930’s as a means of
describing computation, and is equivalent to Turing machines
(Turing-complete!)

• One of the precursors of symbolic computation
• “... [T]he smallest universal programming language of (sic) the
world.”

< expr > :=< name > | < func > | < application > |(< expr >)

< func > := λ < name > . < expr >

< application > :=< expr >< expr >

http://www.inf.fu-berlin.de/lehre/WS03/alpi/lambda.pdf

Functional Programming Languages LISP Haskell

The λ-calculus

• Developed by Alonzo Church in the 1930’s as a means of
describing computation, and is equivalent to Turing machines
(Turing-complete!)

• One of the precursors of symbolic computation

• “... [T]he smallest universal programming language of (sic) the
world.”

< expr > :=< name > | < func > | < application > |(< expr >)

< func > := λ < name > . < expr >

< application > :=< expr >< expr >

http://www.inf.fu-berlin.de/lehre/WS03/alpi/lambda.pdf

Functional Programming Languages LISP Haskell

The λ-calculus

• Developed by Alonzo Church in the 1930’s as a means of
describing computation, and is equivalent to Turing machines
(Turing-complete!)

• One of the precursors of symbolic computation
• “... [T]he smallest universal programming language of (sic) the
world.”

< expr > :=< name > | < func > | < application > |(< expr >)

< func > := λ < name > . < expr >

< application > :=< expr >< expr >

http://www.inf.fu-berlin.de/lehre/WS03/alpi/lambda.pdf

Functional Programming Languages LISP Haskell

The λ-calculus

• Developed by Alonzo Church in the 1930’s as a means of
describing computation, and is equivalent to Turing machines
(Turing-complete!)

• One of the precursors of symbolic computation
• “... [T]he smallest universal programming language of (sic) the
world.”

< expr > :=< name > | < func > | < application > |(< expr >)

< func > := λ < name > . < expr >

< application > :=< expr >< expr >

http://www.inf.fu-berlin.de/lehre/WS03/alpi/lambda.pdf

Functional Programming Languages LISP Haskell

The λ-calculus - Basic Examples

• Identity function: I ≡ λx.x

• I(y) ≡ (λx.x)y
• I(z) ≡ (λx.x)z
• I(I) ≡ (λx.x)(λz.z)

• Natural number representations
• 0 ≡ λsz.z
• 1 ≡ λsz.s(z)
• 2 ≡ λsz.s(s(z))
• 3 ≡ λsz.s(s(s(z)))

• Succesor function:S ≡ λwyx.y(wyx)
• S(1) ≡ (λwyx.y(wyx))(λsz.s(z))
• S(3) ≡ (λwyx.y(wyx))(λsz.s(s(s(z))))
• 2S(3) ≡ (λsz.s(s(z)))(λwyx.y(wyx))(λab.a(a(a(b))))

http://www.inf.fu-berlin.de/lehre/WS03/alpi/lambda.pdf

Functional Programming Languages LISP Haskell

The λ-calculus - Basic Examples

• Identity function: I ≡ λx.x
• I(y) ≡ (λx.x)y
• I(z) ≡ (λx.x)z
• I(I) ≡ (λx.x)(λz.z)

• Natural number representations
• 0 ≡ λsz.z
• 1 ≡ λsz.s(z)
• 2 ≡ λsz.s(s(z))
• 3 ≡ λsz.s(s(s(z)))

• Succesor function:S ≡ λwyx.y(wyx)
• S(1) ≡ (λwyx.y(wyx))(λsz.s(z))
• S(3) ≡ (λwyx.y(wyx))(λsz.s(s(s(z))))
• 2S(3) ≡ (λsz.s(s(z)))(λwyx.y(wyx))(λab.a(a(a(b))))

http://www.inf.fu-berlin.de/lehre/WS03/alpi/lambda.pdf

Functional Programming Languages LISP Haskell

The λ-calculus - Basic Examples

• Identity function: I ≡ λx.x
• I(y) ≡ (λx.x)y
• I(z) ≡ (λx.x)z
• I(I) ≡ (λx.x)(λz.z)

• Natural number representations

• 0 ≡ λsz.z
• 1 ≡ λsz.s(z)
• 2 ≡ λsz.s(s(z))
• 3 ≡ λsz.s(s(s(z)))

• Succesor function:S ≡ λwyx.y(wyx)
• S(1) ≡ (λwyx.y(wyx))(λsz.s(z))
• S(3) ≡ (λwyx.y(wyx))(λsz.s(s(s(z))))
• 2S(3) ≡ (λsz.s(s(z)))(λwyx.y(wyx))(λab.a(a(a(b))))

http://www.inf.fu-berlin.de/lehre/WS03/alpi/lambda.pdf

Functional Programming Languages LISP Haskell

The λ-calculus - Basic Examples

• Identity function: I ≡ λx.x
• I(y) ≡ (λx.x)y
• I(z) ≡ (λx.x)z
• I(I) ≡ (λx.x)(λz.z)

• Natural number representations
• 0 ≡ λsz.z
• 1 ≡ λsz.s(z)
• 2 ≡ λsz.s(s(z))
• 3 ≡ λsz.s(s(s(z)))

• Succesor function:S ≡ λwyx.y(wyx)
• S(1) ≡ (λwyx.y(wyx))(λsz.s(z))
• S(3) ≡ (λwyx.y(wyx))(λsz.s(s(s(z))))
• 2S(3) ≡ (λsz.s(s(z)))(λwyx.y(wyx))(λab.a(a(a(b))))

http://www.inf.fu-berlin.de/lehre/WS03/alpi/lambda.pdf

Functional Programming Languages LISP Haskell

The λ-calculus - Basic Examples

• Identity function: I ≡ λx.x
• I(y) ≡ (λx.x)y
• I(z) ≡ (λx.x)z
• I(I) ≡ (λx.x)(λz.z)

• Natural number representations
• 0 ≡ λsz.z
• 1 ≡ λsz.s(z)
• 2 ≡ λsz.s(s(z))
• 3 ≡ λsz.s(s(s(z)))

• Succesor function:S ≡ λwyx.y(wyx)

• S(1) ≡ (λwyx.y(wyx))(λsz.s(z))
• S(3) ≡ (λwyx.y(wyx))(λsz.s(s(s(z))))
• 2S(3) ≡ (λsz.s(s(z)))(λwyx.y(wyx))(λab.a(a(a(b))))

http://www.inf.fu-berlin.de/lehre/WS03/alpi/lambda.pdf

Functional Programming Languages LISP Haskell

The λ-calculus - Basic Examples

• Identity function: I ≡ λx.x
• I(y) ≡ (λx.x)y
• I(z) ≡ (λx.x)z
• I(I) ≡ (λx.x)(λz.z)

• Natural number representations
• 0 ≡ λsz.z
• 1 ≡ λsz.s(z)
• 2 ≡ λsz.s(s(z))
• 3 ≡ λsz.s(s(s(z)))

• Succesor function:S ≡ λwyx.y(wyx)
• S(1) ≡ (λwyx.y(wyx))(λsz.s(z))
• S(3) ≡ (λwyx.y(wyx))(λsz.s(s(s(z))))
• 2S(3) ≡ (λsz.s(s(z)))(λwyx.y(wyx))(λab.a(a(a(b))))

http://www.inf.fu-berlin.de/lehre/WS03/alpi/lambda.pdf

Functional Programming Languages LISP Haskell

Characteristics of an functional PL

• Based on the concepts of mathematical functions
• Computation often defined by separation into cases

• No “variables”, assignments, and iterative constructs
• There are identifiers bound to values, but not in a variable “sense”

in that its value can be changed by an assignment statement
• Values are bound to identifiers, not assigned. At times, values
bound to identifiers are substituted

• Only means of iteration is through recursion

Functional Programming Languages LISP Haskell

Characteristics of an functional PL

• Based on the concepts of mathematical functions

• Computation often defined by separation into cases
• No “variables”, assignments, and iterative constructs

• There are identifiers bound to values, but not in a variable “sense”
in that its value can be changed by an assignment statement

• Values are bound to identifiers, not assigned. At times, values
bound to identifiers are substituted

• Only means of iteration is through recursion

Functional Programming Languages LISP Haskell

Characteristics of an functional PL

• Based on the concepts of mathematical functions
• Computation often defined by separation into cases

• No “variables”, assignments, and iterative constructs
• There are identifiers bound to values, but not in a variable “sense”

in that its value can be changed by an assignment statement
• Values are bound to identifiers, not assigned. At times, values
bound to identifiers are substituted

• Only means of iteration is through recursion

Functional Programming Languages LISP Haskell

Characteristics of an functional PL

• Based on the concepts of mathematical functions
• Computation often defined by separation into cases

• No “variables”, assignments, and iterative constructs

• There are identifiers bound to values, but not in a variable “sense”
in that its value can be changed by an assignment statement

• Values are bound to identifiers, not assigned. At times, values
bound to identifiers are substituted

• Only means of iteration is through recursion

Functional Programming Languages LISP Haskell

Characteristics of an functional PL

• Based on the concepts of mathematical functions
• Computation often defined by separation into cases

• No “variables”, assignments, and iterative constructs
• There are identifiers bound to values, but not in a variable “sense”
in that its value can be changed by an assignment statement

• Values are bound to identifiers, not assigned. At times, values
bound to identifiers are substituted

• Only means of iteration is through recursion

Functional Programming Languages LISP Haskell

Characteristics of an functional PL

• Based on the concepts of mathematical functions
• Computation often defined by separation into cases

• No “variables”, assignments, and iterative constructs
• There are identifiers bound to values, but not in a variable “sense”
in that its value can be changed by an assignment statement

• Values are bound to identifiers, not assigned. At times, values
bound to identifiers are substituted

• Only means of iteration is through recursion

Functional Programming Languages LISP Haskell

Characteristics of an functional PL

• Based on the concepts of mathematical functions
• Computation often defined by separation into cases

• No “variables”, assignments, and iterative constructs
• There are identifiers bound to values, but not in a variable “sense”
in that its value can be changed by an assignment statement

• Values are bound to identifiers, not assigned. At times, values
bound to identifiers are substituted

• Only means of iteration is through recursion

Functional Programming Languages LISP Haskell

Functional Programming Languages

Functional Programming Languages

LISP

Haskell

Functional Programming Languages LISP Haskell

Background

• In 1958, John McCarthy drafted a programming language for
doing symbolic computation, which became the first draft of
LISP

• There are two basic data types: atoms and lists
• Atoms are stand alone literals or identifiers: 1, e, id
• Lists are delimited by parentheses: (a b c d), (e), ((f g) h)

• An expression/statement is structured such that an
operator/function precedes its operands/parameters (Polish
prefix notation)

• (+ 1 3)
• (car H T)

http://groups.engin.umd.umich.edu/CIS/course.des/cis400/lisp/lisp.html

Functional Programming Languages LISP Haskell

Background

• In 1958, John McCarthy drafted a programming language for
doing symbolic computation, which became the first draft of
LISP

• There are two basic data types: atoms and lists
• Atoms are stand alone literals or identifiers: 1, e, id
• Lists are delimited by parentheses: (a b c d), (e), ((f g) h)

• An expression/statement is structured such that an
operator/function precedes its operands/parameters (Polish
prefix notation)

• (+ 1 3)
• (car H T)

http://groups.engin.umd.umich.edu/CIS/course.des/cis400/lisp/lisp.html

Functional Programming Languages LISP Haskell

Background

• In 1958, John McCarthy drafted a programming language for
doing symbolic computation, which became the first draft of
LISP

• There are two basic data types: atoms and lists

• Atoms are stand alone literals or identifiers: 1, e, id
• Lists are delimited by parentheses: (a b c d), (e), ((f g) h)

• An expression/statement is structured such that an
operator/function precedes its operands/parameters (Polish
prefix notation)

• (+ 1 3)
• (car H T)

http://groups.engin.umd.umich.edu/CIS/course.des/cis400/lisp/lisp.html

Functional Programming Languages LISP Haskell

Background

• In 1958, John McCarthy drafted a programming language for
doing symbolic computation, which became the first draft of
LISP

• There are two basic data types: atoms and lists
• Atoms are stand alone literals or identifiers: 1, e, id

• Lists are delimited by parentheses: (a b c d), (e), ((f g) h)
• An expression/statement is structured such that an
operator/function precedes its operands/parameters (Polish
prefix notation)

• (+ 1 3)
• (car H T)

http://groups.engin.umd.umich.edu/CIS/course.des/cis400/lisp/lisp.html

Functional Programming Languages LISP Haskell

Background

• In 1958, John McCarthy drafted a programming language for
doing symbolic computation, which became the first draft of
LISP

• There are two basic data types: atoms and lists
• Atoms are stand alone literals or identifiers: 1, e, id
• Lists are delimited by parentheses: (a b c d), (e), ((f g) h)

• An expression/statement is structured such that an
operator/function precedes its operands/parameters (Polish
prefix notation)

• (+ 1 3)
• (car H T)

http://groups.engin.umd.umich.edu/CIS/course.des/cis400/lisp/lisp.html

Functional Programming Languages LISP Haskell

Background

• In 1958, John McCarthy drafted a programming language for
doing symbolic computation, which became the first draft of
LISP

• There are two basic data types: atoms and lists
• Atoms are stand alone literals or identifiers: 1, e, id
• Lists are delimited by parentheses: (a b c d), (e), ((f g) h)

• An expression/statement is structured such that an
operator/function precedes its operands/parameters (Polish
prefix notation)

• (+ 1 3)
• (car H T)

http://groups.engin.umd.umich.edu/CIS/course.des/cis400/lisp/lisp.html

Functional Programming Languages LISP Haskell

Background

• In 1958, John McCarthy drafted a programming language for
doing symbolic computation, which became the first draft of
LISP

• There are two basic data types: atoms and lists
• Atoms are stand alone literals or identifiers: 1, e, id
• Lists are delimited by parentheses: (a b c d), (e), ((f g) h)

• An expression/statement is structured such that an
operator/function precedes its operands/parameters (Polish
prefix notation)

• (+ 1 3)
• (car H T)

http://groups.engin.umd.umich.edu/CIS/course.des/cis400/lisp/lisp.html

Functional Programming Languages LISP Haskell

Evaluation

• Data types4

• Two “primitive” types: atomic types and list types
• Integers, real and complex floating point numbers, and characters

as atomic types
• List types can include atomic and/or list types

• Arrays are supported
• Functions are also treated as (LISP) objects

4https://www.cs.cmu.edu/Groups/AI/html/cltl/clm/node15.html

Functional Programming Languages LISP Haskell

Evaluation

• Data types4
• Two “primitive” types: atomic types and list types

• Integers, real and complex floating point numbers, and characters
as atomic types

• List types can include atomic and/or list types
• Arrays are supported
• Functions are also treated as (LISP) objects

4https://www.cs.cmu.edu/Groups/AI/html/cltl/clm/node15.html

Functional Programming Languages LISP Haskell

Evaluation

• Data types4
• Two “primitive” types: atomic types and list types

• Integers, real and complex floating point numbers, and characters
as atomic types

• List types can include atomic and/or list types
• Arrays are supported
• Functions are also treated as (LISP) objects

4https://www.cs.cmu.edu/Groups/AI/html/cltl/clm/node15.html

Functional Programming Languages LISP Haskell

Evaluation

• Data types4
• Two “primitive” types: atomic types and list types

• Integers, real and complex floating point numbers, and characters
as atomic types

• List types can include atomic and/or list types

• Arrays are supported
• Functions are also treated as (LISP) objects

4https://www.cs.cmu.edu/Groups/AI/html/cltl/clm/node15.html

Functional Programming Languages LISP Haskell

Evaluation

• Data types4
• Two “primitive” types: atomic types and list types

• Integers, real and complex floating point numbers, and characters
as atomic types

• List types can include atomic and/or list types
• Arrays are supported

• Functions are also treated as (LISP) objects

4https://www.cs.cmu.edu/Groups/AI/html/cltl/clm/node15.html

Functional Programming Languages LISP Haskell

Evaluation

• Data types4
• Two “primitive” types: atomic types and list types

• Integers, real and complex floating point numbers, and characters
as atomic types

• List types can include atomic and/or list types
• Arrays are supported
• Functions are also treated as (LISP) objects

4https://www.cs.cmu.edu/Groups/AI/html/cltl/clm/node15.html

Functional Programming Languages LISP Haskell

Evaluation

• Syntax design (Basic LISP5,6):

• Production rules7: 17
• Number of top alternatives7: 10
• Number of symbols7: 37
• Vocabulary

• Nonterminal symbols7: 11
• Terminal symbols7: 47

• Very simple, near λ-calculus specs
• Allows for programs and other functions to be built using only a

handful syntactic components
• Abstraction:

• No access modifiers, all defined functions are “public” in the
duration it is running/invoked 8

• Common Lisp employs a package system to form a name space
for identifiers used 9

5http://cui.unige.ch/isi/bnf/LISP/BNFlisp.html
6http://ep.yimg.com/ty/cdn/paulgraham/jmc.lisp
7Manually counted
8https://www.cs.cmu.edu/Groups/AI/html/cltl/clm/node43.html
9https://www.cs.cmu.edu/Groups/AI/html/cltl/clm/node111.html

Functional Programming Languages LISP Haskell

Evaluation

• Syntax design (Basic LISP5,6):
• Production rules7: 17
• Number of top alternatives7: 10
• Number of symbols7: 37
• Vocabulary

• Nonterminal symbols7: 11
• Terminal symbols7: 47

• Very simple, near λ-calculus specs
• Allows for programs and other functions to be built using only a

handful syntactic components
• Abstraction:

• No access modifiers, all defined functions are “public” in the
duration it is running/invoked 8

• Common Lisp employs a package system to form a name space
for identifiers used 9

5http://cui.unige.ch/isi/bnf/LISP/BNFlisp.html
6http://ep.yimg.com/ty/cdn/paulgraham/jmc.lisp
7Manually counted
8https://www.cs.cmu.edu/Groups/AI/html/cltl/clm/node43.html
9https://www.cs.cmu.edu/Groups/AI/html/cltl/clm/node111.html

Functional Programming Languages LISP Haskell

Evaluation

• Syntax design (Basic LISP5,6):
• Production rules7: 17
• Number of top alternatives7: 10
• Number of symbols7: 37
• Vocabulary

• Nonterminal symbols7: 11
• Terminal symbols7: 47

• Very simple, near λ-calculus specs

• Allows for programs and other functions to be built using only a
handful syntactic components

• Abstraction:
• No access modifiers, all defined functions are “public” in the
duration it is running/invoked 8

• Common Lisp employs a package system to form a name space
for identifiers used 9

5http://cui.unige.ch/isi/bnf/LISP/BNFlisp.html
6http://ep.yimg.com/ty/cdn/paulgraham/jmc.lisp
7Manually counted
8https://www.cs.cmu.edu/Groups/AI/html/cltl/clm/node43.html
9https://www.cs.cmu.edu/Groups/AI/html/cltl/clm/node111.html

Functional Programming Languages LISP Haskell

Evaluation

• Syntax design (Basic LISP5,6):
• Production rules7: 17
• Number of top alternatives7: 10
• Number of symbols7: 37
• Vocabulary

• Nonterminal symbols7: 11
• Terminal symbols7: 47

• Very simple, near λ-calculus specs
• Allows for programs and other functions to be built using only a
handful syntactic components

• Abstraction:
• No access modifiers, all defined functions are “public” in the
duration it is running/invoked 8

• Common Lisp employs a package system to form a name space
for identifiers used 9

5http://cui.unige.ch/isi/bnf/LISP/BNFlisp.html
6http://ep.yimg.com/ty/cdn/paulgraham/jmc.lisp
7Manually counted
8https://www.cs.cmu.edu/Groups/AI/html/cltl/clm/node43.html
9https://www.cs.cmu.edu/Groups/AI/html/cltl/clm/node111.html

Functional Programming Languages LISP Haskell

Evaluation

• Syntax design (Basic LISP5,6):
• Production rules7: 17
• Number of top alternatives7: 10
• Number of symbols7: 37
• Vocabulary

• Nonterminal symbols7: 11
• Terminal symbols7: 47

• Very simple, near λ-calculus specs
• Allows for programs and other functions to be built using only a
handful syntactic components

• Abstraction:

• No access modifiers, all defined functions are “public” in the
duration it is running/invoked 8

• Common Lisp employs a package system to form a name space
for identifiers used 9

5http://cui.unige.ch/isi/bnf/LISP/BNFlisp.html
6http://ep.yimg.com/ty/cdn/paulgraham/jmc.lisp
7Manually counted
8https://www.cs.cmu.edu/Groups/AI/html/cltl/clm/node43.html
9https://www.cs.cmu.edu/Groups/AI/html/cltl/clm/node111.html

Functional Programming Languages LISP Haskell

Evaluation

• Syntax design (Basic LISP5,6):
• Production rules7: 17
• Number of top alternatives7: 10
• Number of symbols7: 37
• Vocabulary

• Nonterminal symbols7: 11
• Terminal symbols7: 47

• Very simple, near λ-calculus specs
• Allows for programs and other functions to be built using only a
handful syntactic components

• Abstraction:
• No access modifiers, all defined functions are “public” in the
duration it is running/invoked 8

• Common Lisp employs a package system to form a name space
for identifiers used 9

5http://cui.unige.ch/isi/bnf/LISP/BNFlisp.html
6http://ep.yimg.com/ty/cdn/paulgraham/jmc.lisp
7Manually counted
8https://www.cs.cmu.edu/Groups/AI/html/cltl/clm/node43.html
9https://www.cs.cmu.edu/Groups/AI/html/cltl/clm/node111.html

Functional Programming Languages LISP Haskell

Evaluation

• Syntax design (Basic LISP5,6):
• Production rules7: 17
• Number of top alternatives7: 10
• Number of symbols7: 37
• Vocabulary

• Nonterminal symbols7: 11
• Terminal symbols7: 47

• Very simple, near λ-calculus specs
• Allows for programs and other functions to be built using only a
handful syntactic components

• Abstraction:
• No access modifiers, all defined functions are “public” in the
duration it is running/invoked 8

• Common Lisp employs a package system to form a name space
for identifiers used 9

5http://cui.unige.ch/isi/bnf/LISP/BNFlisp.html
6http://ep.yimg.com/ty/cdn/paulgraham/jmc.lisp
7Manually counted
8https://www.cs.cmu.edu/Groups/AI/html/cltl/clm/node43.html
9https://www.cs.cmu.edu/Groups/AI/html/cltl/clm/node111.html

Functional Programming Languages LISP Haskell

Evaluation

• Expressivity: Has some built-in packages, but mostly for basic
I/O and for aiding function definitions 10

• Exception handling: 11

• define-condition to define a custom exception/error
• handler-case to define function in handling a condition (of a

particular condition-type)
• restart-case to define function recovering from error and issuing
restart of function run

10https://www.cs.cmu.edu/Groups/AI/html/cltl/clm/node117.html
11http://www.gigamonkeys.com/book/beyond-exception-handling-conditions-

and-restarts.html

Functional Programming Languages LISP Haskell

Evaluation

• Expressivity: Has some built-in packages, but mostly for basic
I/O and for aiding function definitions 10

• Exception handling: 11

• define-condition to define a custom exception/error
• handler-case to define function in handling a condition (of a

particular condition-type)
• restart-case to define function recovering from error and issuing
restart of function run

10https://www.cs.cmu.edu/Groups/AI/html/cltl/clm/node117.html
11http://www.gigamonkeys.com/book/beyond-exception-handling-conditions-

and-restarts.html

Functional Programming Languages LISP Haskell

Evaluation

• Expressivity: Has some built-in packages, but mostly for basic
I/O and for aiding function definitions 10

• Exception handling: 11

• define-condition to define a custom exception/error
• handler-case to define function in handling a condition (of a

particular condition-type)
• restart-case to define function recovering from error and issuing
restart of function run

10https://www.cs.cmu.edu/Groups/AI/html/cltl/clm/node117.html
11http://www.gigamonkeys.com/book/beyond-exception-handling-conditions-

and-restarts.html

Functional Programming Languages LISP Haskell

Evaluation

• Expressivity: Has some built-in packages, but mostly for basic
I/O and for aiding function definitions 10

• Exception handling: 11

• define-condition to define a custom exception/error

• handler-case to define function in handling a condition (of a
particular condition-type)

• restart-case to define function recovering from error and issuing
restart of function run

10https://www.cs.cmu.edu/Groups/AI/html/cltl/clm/node117.html
11http://www.gigamonkeys.com/book/beyond-exception-handling-conditions-

and-restarts.html

Functional Programming Languages LISP Haskell

Evaluation

• Expressivity: Has some built-in packages, but mostly for basic
I/O and for aiding function definitions 10

• Exception handling: 11

• define-condition to define a custom exception/error
• handler-case to define function in handling a condition (of a
particular condition-type)

• restart-case to define function recovering from error and issuing
restart of function run

10https://www.cs.cmu.edu/Groups/AI/html/cltl/clm/node117.html
11http://www.gigamonkeys.com/book/beyond-exception-handling-conditions-

and-restarts.html

Functional Programming Languages LISP Haskell

Evaluation

• Expressivity: Has some built-in packages, but mostly for basic
I/O and for aiding function definitions 10

• Exception handling: 11

• define-condition to define a custom exception/error
• handler-case to define function in handling a condition (of a
particular condition-type)

• restart-case to define function recovering from error and issuing
restart of function run

10https://www.cs.cmu.edu/Groups/AI/html/cltl/clm/node117.html
11http://www.gigamonkeys.com/book/beyond-exception-handling-conditions-

and-restarts.html

Functional Programming Languages LISP Haskell

Evaluation

• Restricted aliasing: Initially had pass-by-name, but since
deprecated; now only employs pass-by-value12

• Efficiency 13,14

• LISP employs dynamic type checking, but nonetheless is
strongly-typed

• Generally an interpreted language, but Common Lisp (at least)
allows code compilation

• Tail recursions are almost always imminent in coding
• cons is an expensive function
• “The main cause of inefficiency is the compiler’s lack of adequate

information about the types of function argument and result
values.”

• Can be made to run at par with C programs with optimized
coding15

12https://www.cl.cam.ac.uk/teaching/1213/ConceptsPL/l4.pdf
13https://common-lisp.net/project/cmucl/doc/cmu-user/compiler-hint.html
14http://c2.com/cgi/wiki?WeakAndStrongTyping
15http://www.iaeng.org/IJCS/issues_v32/issue_4/IJCS_32_4_19.pdf

Functional Programming Languages LISP Haskell

Evaluation

• Restricted aliasing: Initially had pass-by-name, but since
deprecated; now only employs pass-by-value12

• Efficiency 13,14

• LISP employs dynamic type checking, but nonetheless is
strongly-typed

• Generally an interpreted language, but Common Lisp (at least)
allows code compilation

• Tail recursions are almost always imminent in coding
• cons is an expensive function
• “The main cause of inefficiency is the compiler’s lack of adequate

information about the types of function argument and result
values.”

• Can be made to run at par with C programs with optimized
coding15

12https://www.cl.cam.ac.uk/teaching/1213/ConceptsPL/l4.pdf
13https://common-lisp.net/project/cmucl/doc/cmu-user/compiler-hint.html
14http://c2.com/cgi/wiki?WeakAndStrongTyping
15http://www.iaeng.org/IJCS/issues_v32/issue_4/IJCS_32_4_19.pdf

Functional Programming Languages LISP Haskell

Evaluation

• Restricted aliasing: Initially had pass-by-name, but since
deprecated; now only employs pass-by-value12

• Efficiency 13,14

• LISP employs dynamic type checking, but nonetheless is
strongly-typed

• Generally an interpreted language, but Common Lisp (at least)
allows code compilation

• Tail recursions are almost always imminent in coding
• cons is an expensive function
• “The main cause of inefficiency is the compiler’s lack of adequate

information about the types of function argument and result
values.”

• Can be made to run at par with C programs with optimized
coding15

12https://www.cl.cam.ac.uk/teaching/1213/ConceptsPL/l4.pdf
13https://common-lisp.net/project/cmucl/doc/cmu-user/compiler-hint.html
14http://c2.com/cgi/wiki?WeakAndStrongTyping
15http://www.iaeng.org/IJCS/issues_v32/issue_4/IJCS_32_4_19.pdf

Functional Programming Languages LISP Haskell

Evaluation

• Restricted aliasing: Initially had pass-by-name, but since
deprecated; now only employs pass-by-value12

• Efficiency 13,14

• LISP employs dynamic type checking, but nonetheless is
strongly-typed

• Generally an interpreted language, but Common Lisp (at least)
allows code compilation

• Tail recursions are almost always imminent in coding
• cons is an expensive function
• “The main cause of inefficiency is the compiler’s lack of adequate

information about the types of function argument and result
values.”

• Can be made to run at par with C programs with optimized
coding15

12https://www.cl.cam.ac.uk/teaching/1213/ConceptsPL/l4.pdf
13https://common-lisp.net/project/cmucl/doc/cmu-user/compiler-hint.html
14http://c2.com/cgi/wiki?WeakAndStrongTyping
15http://www.iaeng.org/IJCS/issues_v32/issue_4/IJCS_32_4_19.pdf

Functional Programming Languages LISP Haskell

Evaluation

• Restricted aliasing: Initially had pass-by-name, but since
deprecated; now only employs pass-by-value12

• Efficiency 13,14

• LISP employs dynamic type checking, but nonetheless is
strongly-typed

• Generally an interpreted language, but Common Lisp (at least)
allows code compilation

• Tail recursions are almost always imminent in coding

• cons is an expensive function
• “The main cause of inefficiency is the compiler’s lack of adequate

information about the types of function argument and result
values.”

• Can be made to run at par with C programs with optimized
coding15

12https://www.cl.cam.ac.uk/teaching/1213/ConceptsPL/l4.pdf
13https://common-lisp.net/project/cmucl/doc/cmu-user/compiler-hint.html
14http://c2.com/cgi/wiki?WeakAndStrongTyping
15http://www.iaeng.org/IJCS/issues_v32/issue_4/IJCS_32_4_19.pdf

Functional Programming Languages LISP Haskell

Evaluation

• Restricted aliasing: Initially had pass-by-name, but since
deprecated; now only employs pass-by-value12

• Efficiency 13,14

• LISP employs dynamic type checking, but nonetheless is
strongly-typed

• Generally an interpreted language, but Common Lisp (at least)
allows code compilation

• Tail recursions are almost always imminent in coding
• cons is an expensive function

• “The main cause of inefficiency is the compiler’s lack of adequate
information about the types of function argument and result
values.”

• Can be made to run at par with C programs with optimized
coding15

12https://www.cl.cam.ac.uk/teaching/1213/ConceptsPL/l4.pdf
13https://common-lisp.net/project/cmucl/doc/cmu-user/compiler-hint.html
14http://c2.com/cgi/wiki?WeakAndStrongTyping
15http://www.iaeng.org/IJCS/issues_v32/issue_4/IJCS_32_4_19.pdf

Functional Programming Languages LISP Haskell

Evaluation

• Restricted aliasing: Initially had pass-by-name, but since
deprecated; now only employs pass-by-value12

• Efficiency 13,14

• LISP employs dynamic type checking, but nonetheless is
strongly-typed

• Generally an interpreted language, but Common Lisp (at least)
allows code compilation

• Tail recursions are almost always imminent in coding
• cons is an expensive function
• “The main cause of inefficiency is the compiler’s lack of adequate
information about the types of function argument and result
values.”

• Can be made to run at par with C programs with optimized
coding15

12https://www.cl.cam.ac.uk/teaching/1213/ConceptsPL/l4.pdf
13https://common-lisp.net/project/cmucl/doc/cmu-user/compiler-hint.html
14http://c2.com/cgi/wiki?WeakAndStrongTyping
15http://www.iaeng.org/IJCS/issues_v32/issue_4/IJCS_32_4_19.pdf

Functional Programming Languages LISP Haskell

Evaluation

• Restricted aliasing: Initially had pass-by-name, but since
deprecated; now only employs pass-by-value12

• Efficiency 13,14

• LISP employs dynamic type checking, but nonetheless is
strongly-typed

• Generally an interpreted language, but Common Lisp (at least)
allows code compilation

• Tail recursions are almost always imminent in coding
• cons is an expensive function
• “The main cause of inefficiency is the compiler’s lack of adequate
information about the types of function argument and result
values.”

• Can be made to run at par with C programs with optimized
coding15

12https://www.cl.cam.ac.uk/teaching/1213/ConceptsPL/l4.pdf
13https://common-lisp.net/project/cmucl/doc/cmu-user/compiler-hint.html
14http://c2.com/cgi/wiki?WeakAndStrongTyping
15http://www.iaeng.org/IJCS/issues_v32/issue_4/IJCS_32_4_19.pdf

Functional Programming Languages LISP Haskell

Functional Programming Languages

Functional Programming Languages

LISP

Haskell

Functional Programming Languages LISP Haskell

Background

• Conceptualized in a meeting between Paul Hudak, Philip Wadler,
and Peyton Jones in 1987 .

• Founded on the idea of lazy functional languages, and partially
based on the design of the Miranda programming language, but
more on an open standard

• The first version of Haskell was released in April 1990.

http://research.microsoft.com/en-us/um/people/simonpj/papers/history-of-
haskell/history.pdf

Functional Programming Languages LISP Haskell

Background

• Conceptualized in a meeting between Paul Hudak, Philip Wadler,
and Peyton Jones in 1987 .

• Founded on the idea of lazy functional languages, and partially
based on the design of the Miranda programming language, but
more on an open standard

• The first version of Haskell was released in April 1990.

http://research.microsoft.com/en-us/um/people/simonpj/papers/history-of-
haskell/history.pdf

Functional Programming Languages LISP Haskell

Background

• Conceptualized in a meeting between Paul Hudak, Philip Wadler,
and Peyton Jones in 1987 .

• Founded on the idea of lazy functional languages, and partially
based on the design of the Miranda programming language, but
more on an open standard

• The first version of Haskell was released in April 1990.

http://research.microsoft.com/en-us/um/people/simonpj/papers/history-of-
haskell/history.pdf

Functional Programming Languages LISP Haskell

Background

• Conceptualized in a meeting between Paul Hudak, Philip Wadler,
and Peyton Jones in 1987 .

• Founded on the idea of lazy functional languages, and partially
based on the design of the Miranda programming language, but
more on an open standard

• The first version of Haskell was released in April 1990.

http://research.microsoft.com/en-us/um/people/simonpj/papers/history-of-
haskell/history.pdf

Functional Programming Languages LISP Haskell

Evaluation

• Data types16,17

• Integers, real (floating point) numbers, characters, logical as
primitive types

• Lists in lieu of arrays, tuples as immutable lists, and strings as
derived types

• Syntax design (Haskell 9818,19)
• Production rules: 224
• Number of top alternatives: 194
• Number of symbols: 92
• Vocabulary

• Nonterminal symbols: 69
• Terminal symbols: 147

16http://learnyouahaskell.com/starting-out
17http://learnyouahaskell.com/types-and-typeclasses
18https://www.haskell.org/onlinereport/syntax-iso.html
19Manually counted

Functional Programming Languages LISP Haskell

Evaluation

• Data types16,17

• Integers, real (floating point) numbers, characters, logical as
primitive types

• Lists in lieu of arrays, tuples as immutable lists, and strings as
derived types

• Syntax design (Haskell 9818,19)
• Production rules: 224
• Number of top alternatives: 194
• Number of symbols: 92
• Vocabulary

• Nonterminal symbols: 69
• Terminal symbols: 147

16http://learnyouahaskell.com/starting-out
17http://learnyouahaskell.com/types-and-typeclasses
18https://www.haskell.org/onlinereport/syntax-iso.html
19Manually counted

Functional Programming Languages LISP Haskell

Evaluation

• Data types16,17

• Integers, real (floating point) numbers, characters, logical as
primitive types

• Lists in lieu of arrays, tuples as immutable lists, and strings as
derived types

• Syntax design (Haskell 9818,19)
• Production rules: 224
• Number of top alternatives: 194
• Number of symbols: 92
• Vocabulary

• Nonterminal symbols: 69
• Terminal symbols: 147

16http://learnyouahaskell.com/starting-out
17http://learnyouahaskell.com/types-and-typeclasses
18https://www.haskell.org/onlinereport/syntax-iso.html
19Manually counted

Functional Programming Languages LISP Haskell

Evaluation

• Data types16,17

• Integers, real (floating point) numbers, characters, logical as
primitive types

• Lists in lieu of arrays, tuples as immutable lists, and strings as
derived types

• Syntax design (Haskell 9818,19)

• Production rules: 224
• Number of top alternatives: 194
• Number of symbols: 92
• Vocabulary

• Nonterminal symbols: 69
• Terminal symbols: 147

16http://learnyouahaskell.com/starting-out
17http://learnyouahaskell.com/types-and-typeclasses
18https://www.haskell.org/onlinereport/syntax-iso.html
19Manually counted

Functional Programming Languages LISP Haskell

Evaluation

• Data types16,17

• Integers, real (floating point) numbers, characters, logical as
primitive types

• Lists in lieu of arrays, tuples as immutable lists, and strings as
derived types

• Syntax design (Haskell 9818,19)
• Production rules: 224
• Number of top alternatives: 194
• Number of symbols: 92
• Vocabulary

• Nonterminal symbols: 69
• Terminal symbols: 147

16http://learnyouahaskell.com/starting-out
17http://learnyouahaskell.com/types-and-typeclasses
18https://www.haskell.org/onlinereport/syntax-iso.html
19Manually counted

Functional Programming Languages LISP Haskell

Evaluation

• Abstraction20:

• Methods are public and instance variables are private (to the
instances that own it)

• Classes are not in a namespace, so all class names must be unique.

• Expressivity: Has a rich set of modules containing basic
(predefined) functions 21

• Exception handling: Has Maybe and Either keywords for
conditional based exception handling, define custom errors well
as the Control.Exception module 22

20http://pharo.gforge.inria.fr/PBE1/PBE1ch6.html
21http://learnyouahaskell.com/modules
22http://book.realworldhaskell.org/read/error-handling.html

Functional Programming Languages LISP Haskell

Evaluation

• Abstraction20:
• Methods are public and instance variables are private (to the
instances that own it)

• Classes are not in a namespace, so all class names must be unique.

• Expressivity: Has a rich set of modules containing basic
(predefined) functions 21

• Exception handling: Has Maybe and Either keywords for
conditional based exception handling, define custom errors well
as the Control.Exception module 22

20http://pharo.gforge.inria.fr/PBE1/PBE1ch6.html
21http://learnyouahaskell.com/modules
22http://book.realworldhaskell.org/read/error-handling.html

Functional Programming Languages LISP Haskell

Evaluation

• Abstraction20:
• Methods are public and instance variables are private (to the
instances that own it)

• Classes are not in a namespace, so all class names must be unique.

• Expressivity: Has a rich set of modules containing basic
(predefined) functions 21

• Exception handling: Has Maybe and Either keywords for
conditional based exception handling, define custom errors well
as the Control.Exception module 22

20http://pharo.gforge.inria.fr/PBE1/PBE1ch6.html
21http://learnyouahaskell.com/modules
22http://book.realworldhaskell.org/read/error-handling.html

Functional Programming Languages LISP Haskell

Evaluation

• Abstraction20:
• Methods are public and instance variables are private (to the
instances that own it)

• Classes are not in a namespace, so all class names must be unique.

• Expressivity: Has a rich set of modules containing basic
(predefined) functions 21

• Exception handling: Has Maybe and Either keywords for
conditional based exception handling, define custom errors well
as the Control.Exception module 22

20http://pharo.gforge.inria.fr/PBE1/PBE1ch6.html
21http://learnyouahaskell.com/modules
22http://book.realworldhaskell.org/read/error-handling.html

Functional Programming Languages LISP Haskell

Evaluation

• Abstraction20:
• Methods are public and instance variables are private (to the
instances that own it)

• Classes are not in a namespace, so all class names must be unique.

• Expressivity: Has a rich set of modules containing basic
(predefined) functions 21

• Exception handling: Has Maybe and Either keywords for
conditional based exception handling, define custom errors well
as the Control.Exception module 22

20http://pharo.gforge.inria.fr/PBE1/PBE1ch6.html
21http://learnyouahaskell.com/modules
22http://book.realworldhaskell.org/read/error-handling.html

Functional Programming Languages LISP Haskell

Evaluation

• Restricted aliasing: Purely pass-by-value23,24

• Efficiency
• Haskell employs static type checking. 25

• As with most functional PLs, Haskell also suffers from inefficiency
due to lazy evaluation, but nonetheless efficiency can be attained
through coding optimization26,27

23http://web.cecs.pdx.edu/∼harry/compilers/slides/ParamPassing.pdf
24http://courses.cs.washington.edu/courses/cse341/04wi/lectures/22-parameter-

passing.html
25http://learnyouahaskell.com/types-and-typeclasses
26https://wiki.haskell.org/Haskell_programming_tips
27http://users.aber.ac.uk/afc/stricthaskell.html

Functional Programming Languages LISP Haskell

Evaluation

• Restricted aliasing: Purely pass-by-value23,24

• Efficiency

• Haskell employs static type checking. 25

• As with most functional PLs, Haskell also suffers from inefficiency
due to lazy evaluation, but nonetheless efficiency can be attained
through coding optimization26,27

23http://web.cecs.pdx.edu/∼harry/compilers/slides/ParamPassing.pdf
24http://courses.cs.washington.edu/courses/cse341/04wi/lectures/22-parameter-

passing.html
25http://learnyouahaskell.com/types-and-typeclasses
26https://wiki.haskell.org/Haskell_programming_tips
27http://users.aber.ac.uk/afc/stricthaskell.html

Functional Programming Languages LISP Haskell

Evaluation

• Restricted aliasing: Purely pass-by-value23,24

• Efficiency
• Haskell employs static type checking. 25

• As with most functional PLs, Haskell also suffers from inefficiency
due to lazy evaluation, but nonetheless efficiency can be attained
through coding optimization26,27

23http://web.cecs.pdx.edu/∼harry/compilers/slides/ParamPassing.pdf
24http://courses.cs.washington.edu/courses/cse341/04wi/lectures/22-parameter-

passing.html
25http://learnyouahaskell.com/types-and-typeclasses
26https://wiki.haskell.org/Haskell_programming_tips
27http://users.aber.ac.uk/afc/stricthaskell.html

Functional Programming Languages LISP Haskell

Evaluation

• Restricted aliasing: Purely pass-by-value23,24

• Efficiency
• Haskell employs static type checking. 25

• As with most functional PLs, Haskell also suffers from inefficiency
due to lazy evaluation, but nonetheless efficiency can be attained
through coding optimization26,27

23http://web.cecs.pdx.edu/∼harry/compilers/slides/ParamPassing.pdf
24http://courses.cs.washington.edu/courses/cse341/04wi/lectures/22-parameter-

passing.html
25http://learnyouahaskell.com/types-and-typeclasses
26https://wiki.haskell.org/Haskell_programming_tips
27http://users.aber.ac.uk/afc/stricthaskell.html

Functional Programming Languages LISP Haskell

END OF SESSION 6

	Functional Programming Languages
	LISP
	Haskell

