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Church-Turing thesis and Turing-completeness

• The Church-Turing thesis1: “Whenever there is an effective
method (algorithm) for obtaining the values of a mathematical
function, the function can be computed by a T[uring] M[achine].”

• Turing-completeness is a criterion of a computational system that
can simulate any (single-taped) Turing machine

• Systems here include computional hardware, model of
computation, and programming languages

1http://www.cse.uconn.edu/∼dqg/papers/cie05.pdf
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The λ-calculus

• Developed by Alonzo Church in the 1930’s as a means of
describing computation, and is equivalent to Turing machines
(Turing-complete!)

• One of the precursors of symbolic computation
• “... [T]he smallest universal programming language of (sic) the
world.”

< expr > :=< name > | < func > | < application > |(< expr >)

< func > := λ < name > . < expr >

< application > :=< expr >< expr >

http://www.inf.fu-berlin.de/lehre/WS03/alpi/lambda.pdf
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The λ-calculus - Basic Examples

• Identity function: I ≡ λx.x

• I(y) ≡ (λx.x)y
• I(z) ≡ (λx.x)z
• I(I) ≡ (λx.x)(λz.z)

• Natural number representations
• 0 ≡ λsz.z
• 1 ≡ λsz.s(z)
• 2 ≡ λsz.s(s(z))
• 3 ≡ λsz.s(s(s(z)))

• Succesor function:S ≡ λwyx.y(wyx)
• S(1) ≡ (λwyx.y(wyx))(λsz.s(z))
• S(3) ≡ (λwyx.y(wyx))(λsz.s(s(s(z))))
• 2S(3) ≡ (λsz.s(s(z)))(λwyx.y(wyx))(λab.a(a(a(b))))

http://www.inf.fu-berlin.de/lehre/WS03/alpi/lambda.pdf
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Characteristics of an functional PL

• Based on the concepts of mathematical functions
• Computation often defined by separation into cases

• No “variables”, assignments, and iterative constructs
• There are identifiers bound to values, but not in a variable “sense”

in that its value can be changed by an assignment statement
• Values are bound to identifiers, not assigned. At times, values
bound to identifiers are substituted

• Only means of iteration is through recursion



Functional Programming Languages LISP Haskell

Characteristics of an functional PL

• Based on the concepts of mathematical functions

• Computation often defined by separation into cases
• No “variables”, assignments, and iterative constructs

• There are identifiers bound to values, but not in a variable “sense”
in that its value can be changed by an assignment statement

• Values are bound to identifiers, not assigned. At times, values
bound to identifiers are substituted

• Only means of iteration is through recursion



Functional Programming Languages LISP Haskell

Characteristics of an functional PL

• Based on the concepts of mathematical functions
• Computation often defined by separation into cases

• No “variables”, assignments, and iterative constructs
• There are identifiers bound to values, but not in a variable “sense”

in that its value can be changed by an assignment statement
• Values are bound to identifiers, not assigned. At times, values
bound to identifiers are substituted

• Only means of iteration is through recursion



Functional Programming Languages LISP Haskell

Characteristics of an functional PL

• Based on the concepts of mathematical functions
• Computation often defined by separation into cases

• No “variables”, assignments, and iterative constructs

• There are identifiers bound to values, but not in a variable “sense”
in that its value can be changed by an assignment statement

• Values are bound to identifiers, not assigned. At times, values
bound to identifiers are substituted

• Only means of iteration is through recursion



Functional Programming Languages LISP Haskell

Characteristics of an functional PL

• Based on the concepts of mathematical functions
• Computation often defined by separation into cases

• No “variables”, assignments, and iterative constructs
• There are identifiers bound to values, but not in a variable “sense”
in that its value can be changed by an assignment statement

• Values are bound to identifiers, not assigned. At times, values
bound to identifiers are substituted

• Only means of iteration is through recursion



Functional Programming Languages LISP Haskell

Characteristics of an functional PL

• Based on the concepts of mathematical functions
• Computation often defined by separation into cases

• No “variables”, assignments, and iterative constructs
• There are identifiers bound to values, but not in a variable “sense”
in that its value can be changed by an assignment statement

• Values are bound to identifiers, not assigned. At times, values
bound to identifiers are substituted

• Only means of iteration is through recursion



Functional Programming Languages LISP Haskell

Characteristics of an functional PL

• Based on the concepts of mathematical functions
• Computation often defined by separation into cases

• No “variables”, assignments, and iterative constructs
• There are identifiers bound to values, but not in a variable “sense”
in that its value can be changed by an assignment statement

• Values are bound to identifiers, not assigned. At times, values
bound to identifiers are substituted

• Only means of iteration is through recursion



Functional Programming Languages LISP Haskell

Functional Programming Languages

Functional Programming Languages

LISP

Haskell



Functional Programming Languages LISP Haskell

Background

• In 1958, John McCarthy drafted a programming language for
doing symbolic computation, which became the first draft of
LISP

• There are two basic data types: atoms and lists
• Atoms are stand alone literals or identifiers: 1, e, id
• Lists are delimited by parentheses: (a b c d), (e), ((f g) h)

• An expression/statement is structured such that an
operator/function precedes its operands/parameters (Polish
prefix notation)

• (+ 1 3)
• (car H T)

http://groups.engin.umd.umich.edu/CIS/course.des/cis400/lisp/lisp.html
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Evaluation

• Data types4

• Two “primitive” types: atomic types and list types
• Integers, real and complex floating point numbers, and characters

as atomic types
• List types can include atomic and/or list types

• Arrays are supported
• Functions are also treated as (LISP) objects

4https://www.cs.cmu.edu/Groups/AI/html/cltl/clm/node15.html
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Evaluation

• Syntax design (Basic LISP5,6):

• Production rules7: 17
• Number of top alternatives7: 10
• Number of symbols7: 37
• Vocabulary

• Nonterminal symbols7: 11
• Terminal symbols7: 47

• Very simple, near λ-calculus specs
• Allows for programs and other functions to be built using only a

handful syntactic components
• Abstraction:

• No access modifiers, all defined functions are “public” in the
duration it is running/invoked 8

• Common Lisp employs a package system to form a name space
for identifiers used 9

5http://cui.unige.ch/isi/bnf/LISP/BNFlisp.html
6http://ep.yimg.com/ty/cdn/paulgraham/jmc.lisp
7Manually counted
8https://www.cs.cmu.edu/Groups/AI/html/cltl/clm/node43.html
9https://www.cs.cmu.edu/Groups/AI/html/cltl/clm/node111.html
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Evaluation

• Expressivity: Has some built-in packages, but mostly for basic
I/O and for aiding function definitions 10

• Exception handling: 11

• define-condition to define a custom exception/error
• handler-case to define function in handling a condition (of a

particular condition-type)
• restart-case to define function recovering from error and issuing
restart of function run

10https://www.cs.cmu.edu/Groups/AI/html/cltl/clm/node117.html
11http://www.gigamonkeys.com/book/beyond-exception-handling-conditions-

and-restarts.html
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Evaluation

• Restricted aliasing: Initially had pass-by-name, but since
deprecated; now only employs pass-by-value12

• Efficiency 13,14

• LISP employs dynamic type checking, but nonetheless is
strongly-typed

• Generally an interpreted language, but Common Lisp (at least)
allows code compilation

• Tail recursions are almost always imminent in coding
• cons is an expensive function
• “The main cause of inefficiency is the compiler’s lack of adequate

information about the types of function argument and result
values.”

• Can be made to run at par with C programs with optimized
coding15

12https://www.cl.cam.ac.uk/teaching/1213/ConceptsPL/l4.pdf
13https://common-lisp.net/project/cmucl/doc/cmu-user/compiler-hint.html
14http://c2.com/cgi/wiki?WeakAndStrongTyping
15http://www.iaeng.org/IJCS/issues_v32/issue_4/IJCS_32_4_19.pdf
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Functional Programming Languages LISP Haskell

Background

• Conceptualized in a meeting between Paul Hudak, Philip Wadler,
and Peyton Jones in 1987 .

• Founded on the idea of lazy functional languages, and partially
based on the design of the Miranda programming language, but
more on an open standard

• The first version of Haskell was released in April 1990.

http://research.microsoft.com/en-us/um/people/simonpj/papers/history-of-
haskell/history.pdf
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Functional Programming Languages LISP Haskell

Evaluation

• Data types16,17

• Integers, real (floating point) numbers, characters, logical as
primitive types

• Lists in lieu of arrays, tuples as immutable lists, and strings as
derived types

• Syntax design (Haskell 9818,19)
• Production rules: 224
• Number of top alternatives: 194
• Number of symbols: 92
• Vocabulary

• Nonterminal symbols: 69
• Terminal symbols: 147

16http://learnyouahaskell.com/starting-out
17http://learnyouahaskell.com/types-and-typeclasses
18https://www.haskell.org/onlinereport/syntax-iso.html
19Manually counted
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Evaluation

• Abstraction20:

• Methods are public and instance variables are private (to the
instances that own it)

• Classes are not in a namespace, so all class names must be unique.

• Expressivity: Has a rich set of modules containing basic
(predefined) functions 21

• Exception handling: Has Maybe and Either keywords for
conditional based exception handling, define custom errors well
as the Control.Exception module 22

20http://pharo.gforge.inria.fr/PBE1/PBE1ch6.html
21http://learnyouahaskell.com/modules
22http://book.realworldhaskell.org/read/error-handling.html
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Evaluation

• Restricted aliasing: Purely pass-by-value23,24

• Efficiency
• Haskell employs static type checking. 25

• As with most functional PLs, Haskell also suffers from inefficiency
due to lazy evaluation, but nonetheless efficiency can be attained
through coding optimization26,27

23http://web.cecs.pdx.edu/∼harry/compilers/slides/ParamPassing.pdf
24http://courses.cs.washington.edu/courses/cse341/04wi/lectures/22-parameter-

passing.html
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26https://wiki.haskell.org/Haskell_programming_tips
27http://users.aber.ac.uk/afc/stricthaskell.html
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